login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325290
E.g.f. C(x) + S(x), where C(x*y) + S(x*y) = exp( Integral Integral C(x*y) dx dy ) such that C(x)^2 - S(x)^2 = 1.
4
1, 1, 2, 8, 56, 576, 8336, 160768, 3985792, 123535360, 4679517952, 212713734144, 11427218287616, 716196297048064, 51793067942397952, 4280584942657732608, 400951893341645930496, 42250703121584165486592, 4975999084909976839454720, 651154631135458759089848320, 94178912073481319162642169856, 14983590319172065236171175755776, 2610878440961060713599511173791744
OFFSET
0,3
LINKS
FORMULA
E.g.f. C(x) + S(x), where series C(x) and S(x) are given by
(0.a) C(x) + S(x) = Sum_{n>=0} a(n)*x^n/(n!)^2,
(0.b) C(x) = Sum_{n>=0} a(2*n)*x^(2*n)/(2*n)!^2,
(0.c) S(x) = Sum_{n>=0} a(2*n+1)*x^(2*n+1)/(2*n+1)!^2,
and satisfy the following relations.
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C'(x)/S(x) = S'(x)/C(x) = 1/x * Integral C(x) dx.
(2.a) S(x) = Integral C(x)/x * (Integral C(x) dx) dx.
(2.b) C(x) = 1 + Integral S(x)/x * (Integral C(x) dx) dx.
(3.a) C(x) + S(x) = exp( Integral 1/x * (Integral C(x) dx) dx ).
(3.b) C(x) = cosh( Integral 1/x * (Integral C(x) dx) dx ).
(3.c) S(x) = sinh( Integral 1/x * (Integral C(x) dx) dx ).
Integration.
(4.a) S(x*y) = Integral C(x*y) * (Integral C(x*y) dy) dx.
(4.b) C(x*y) = 1 + Integral S(x*y) * (Integral C(x*y) dy) dx.
(4.c) S(x*y) = Integral C(x*y) * (Integral C(x*y) dx) dy.
(4.d) C(x*y) = 1 + Integral S(x*y) * (Integral C(x*y) dx) dy.
Exponential.
(5.a) C(x*y) + S(x*y) = exp( Integral Integral C(x*y) dx dy ).
(5.b) C(x*y) = cosh( Integral Integral C(x*y) dx dy ).
(5.c) S(x*y) = sinh( Integral Integral C(x*y) dx dy ).
Derivatives.
(6.a) d/dx S(x*y) = C(x*y) * Integral C(x*y) dy.
(6.b) d/dx C(x*y) = S(x*y) * Integral C(x*y) dy.
(6.c) d/dy S(x*y) = C(x*y) * Integral C(x*y) dx.
(6.d) d/dy C(x*y) = S(x*y) * Integral C(x*y) dx.
EXAMPLE
E.g.f. C(x) + S(x) = 1 + x + 2*x^2/2!^2 + 8*x^3/3!^2 + 56*x^4/4!^2 + 576*x^5/5!^2 + 8336*x^6/6!^2 + 160768*x^7/7!^2 + 3985792*x^8/8!^2 + 123535360*x^9/9!^2 + 4679517952*x^10/10!^2 + 212713734144*x^11/11!^2 + 11427218287616*x^12/12!^2 + 716196297048064*x^13/13!^2 + 51793067942397952*x^14/14!^2 + 4280584942657732608*x^15/15!^2 + 400951893341645930496*x^16/16!^2 + 42250703121584165486592*x^17/17!^2 + 4975999084909976839454720*x^18/18!^2 + 651154631135458759089848320*x^19/19!^2 + 94178912073481319162642169856*x^20/20!^2 + ...
where C(x*y) + S(x*y) = exp( Integral Integral C(x*y) dx dy )
such that C(x)^2 - S(x)^2 = 1.
The e.g.f. as a series of reduced fractional coefficients begins
C(x) + S(x) = 1 + x + 1/2*x^2 + 2/9*x^3 + 7/72*x^4 + 1/25*x^5 + 521/32400*x^6 + 628/99225*x^7 + 31139/12700800*x^8 + 1508/1607445*x^9 + 18279367/51438240000*x^10 + 1081918/8104201875*x^11 + 11159392859/224064973440000*x^12 + 97574002/5282781879375*x^13 + 25289583956249/3710964090113280000*x^14 + 37798925176/15099951538546875*x^15 + 4078693576473449/4453156908135936000000*x^16 + ...
RELATED SERIES.
C(x) = 1 + 2*x^2/2!^2 + 56*x^4/4!^2 + 8336*x^6/6!^2 + 3985792*x^8/8!^2 + 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 + 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 + 4975999084909976839454720*x^18/18!^2 + 94178912073481319162642169856*x^20/20!^2 + ...
where C(x) = cosh( Integral 1/x * (Integral C(x) dx) dx ),
also, C(x*y) = cosh( Integral Integral C(x*y) dx dy ).
S(x) = x + 8*x^3/3!^2 + 576*x^5/5!^2 + 160768*x^7/7!^2 + 123535360*x^9/9!^2 + 212713734144*x^11/11!^2 + 716196297048064*x^13/13!^2 + 4280584942657732608*x^15/15!^2 + 42250703121584165486592*x^17/17!^2 + 651154631135458759089848320*x^19/19!^2 + 14983590319172065236171175755776*x^21/21!^2 + ...
where S(x) = sinh( Integral 1/x * (Integral C(x) dx) dx ),
also, S(x*y) = sinh( Integral Integral C(x*y) dx dy ).
The sum at x = 1 evaluates to
Sum_{n>=0} a(n)/n!^2 = 2.885811510447732097353055967265114966697682979695060754...
SPECIFIC VALUES.
At x = 1/2,
C(1/2) = 1.13133757946411922642102833324416139...
S(1/2) = 0.52907912329606456055608764850290077...
log(C(1/2) + S(1/2)) = 0.50706859662590456104854330721421537...
At x = 1,
C(1) = 1.61616724447561044622618032294959193...
S(1) = 1.26964426597212165112687564431552303...
log(C(1) + S(1)) = 1.05980614652360497313310791544203867...
At x = 2,
C(2) = 7.0181980831554020705059330009720760...
S(2) = 6.9465894030384550946994132182413166...
log(C(2) + S(2)) = 2.636538981679765615420983831302958...
At x = 3, the power series for C(x) and S(x) diverge.
PROG
(PARI) {a(n) = my(C=1, S=x); for(i=1, n,
S = intformal( C/x * intformal( C +x*O(x^n) ) );
C = 1 + intformal( S/x * intformal( C +x*O(x^n) ) ); ); n!^2*polcoeff(C+S, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A325291 (C), A325292 (S).
Sequence in context: A326009 A372160 A349562 * A197949 A363589 A243953
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 16 2019
STATUS
approved