login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A324998
Decimal expansion of zeta'(-1, 5/6) (negated).
2
0, 9, 1, 0, 8, 0, 3, 8, 1, 2, 4, 2, 5, 2, 1, 1, 1, 4, 5, 7, 1, 3, 5, 6, 0, 8, 8, 5, 5, 5, 8, 6, 7, 2, 6, 9, 2, 5, 0, 9, 6, 5, 8, 9, 2, 8, 4, 4, 4, 6, 3, 3, 0, 1, 5, 8, 8, 4, 1, 4, 9, 0, 2, 3, 1, 2, 1, 4, 5, 1, 0, 6, 3, 6, 0, 4, 2, 7, 5, 5, 5, 9, 9, 4, 1, 6, 3, 9, 8, 5, 5, 9, 9, 9, 3, 7, 5, 7, 4, 8, 8, 6, 7, 6, 8, 1
OFFSET
0,2
LINKS
J. Miller and V. Adamchik, Derivatives of the Hurwitz Zeta Function for Rational Arguments, Journal of Computational and Applied Mathematics 100 (1998) 201-206. [contains a large number of typos]
Eric Weisstein's World of Mathematics, Hurwitz Zeta Function, formula 25.
FORMULA
Equals Pi/(12*sqrt(3)) + log(2)/72 + log(3)/144 - PolyGamma(1, 1/3)/(8*sqrt(3)*Pi) + Zeta'(-1)/6.
A324997 + A324998 = log(2)/36 + log(3)/72 + Zeta'(-1)/3.
EXAMPLE
-0.09108038124252111457135608855586726925096589284446330158841490231214...
MAPLE
evalf(Zeta(1, -1, 5/6), 120);
evalf(Pi/(12*sqrt(3)) + log(2)/72 + log(3)/144 - Psi(1, 1/3)/(8*sqrt(3)*Pi) + Zeta(1, -1)/6, 120);
MATHEMATICA
RealDigits[Derivative[1, 0][Zeta][-1, 5/6], 10, 120][[1]]
N[With[{k=1}, ((9^k-1)*(2^(2*k-1) + 1)*BernoulliB[2*k]*Pi/(8*Sqrt[3]*k*6^(2*k-1)) + BernoulliB[2*k]*(3^(2*k-1) - 1) * Log[2]/(4*k*6^(2*k-1)) + BernoulliB[2*k]*(2^(2*k-1)-1) * Log[3]/(4*k*6^(2*k-1)) + (-1)^k*(2^(2*k-1) + 1) * PolyGamma[2*k-1, 1/3] / (2*Sqrt[3]*(12*Pi)^(2*k-1)) + (2^(2*k - 1) - 1)*(3^(2*k - 1) - 1)*Zeta'[1-2*k]/2/6^(2*k-1))], 120]
PROG
(PARI) zetahurwitz'(-1, 5/6) \\ Michel Marcus, Mar 24 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Mar 23 2019
STATUS
approved