login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324995 Decimal expansion of zeta'(-1, 1/4). 2
0, 9, 3, 5, 6, 7, 8, 6, 8, 9, 7, 0, 2, 6, 1, 0, 6, 1, 1, 8, 6, 3, 3, 6, 0, 7, 1, 6, 4, 7, 4, 4, 6, 3, 1, 0, 0, 6, 1, 5, 2, 1, 0, 8, 6, 0, 3, 8, 3, 5, 9, 5, 4, 0, 5, 2, 3, 5, 6, 5, 6, 8, 0, 5, 7, 2, 6, 0, 6, 8, 7, 1, 6, 7, 8, 4, 3, 1, 8, 6, 2, 0, 2, 6, 5, 9, 7, 3, 4, 3, 6, 1, 7, 3, 4, 7, 1, 0, 9, 1, 6, 9, 5, 4, 0, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..105.

J. Miller and V. Adamchik, Derivatives of the Hurwitz Zeta Function for Rational Arguments, Journal of Computational and Applied Mathematics 100 (1998) 201-206. [contains a large number of typos]

Eric Weisstein's World of Mathematics, Hurwitz Zeta Function, formula 24.

FORMULA

Equals -Pi/32 + PolyGamma(1, 1/4)/(32*Pi) - Zeta'(-1)/8.

A324995 + A324996 = -Zeta'(-1)/4.

EXAMPLE

0.093567868970261061186336071647446310061521086038359540523565680572606...

MAPLE

evalf(Zeta(1, -1, 1/4), 120);

evalf(-Pi/32 + Psi(1, 1/4)/(32*Pi) - Zeta(1, -1)/8, 120);

MATHEMATICA

RealDigits[Derivative[1, 0][Zeta][-1, 1/4], 10, 120][[1]]

N[With[{k=1}, -(4^k-1) * BernoulliB[2*k] * Pi / 4^(k+1)/k + (4^(k-1)-1)*BernoulliB[2*k] * Log[2]/k/2^(4*k-1) - (-1)^k*PolyGamma[2*k-1, 1/4] / 4 / (8*Pi)^(2*k-1) - (4^k - 2)*Zeta'[1-2*k]/2^(4*k)], 120]

PROG

(PARI) zetahurwitz'(-1, 1/4) \\ Michel Marcus, Mar 24 2019

CROSSREFS

Cf. A084448, A240966, A324996.

Sequence in context: A011235 A011212 A145924 * A200007 A153618 A171051

Adjacent sequences:  A324992 A324993 A324994 * A324996 A324997 A324998

KEYWORD

nonn,cons

AUTHOR

Vaclav Kotesovec, Mar 23 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 18:32 EDT 2020. Contains 336326 sequences. (Running on oeis4.)