login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324533
Lexicographically earliest positive sequence such that a(i) = a(j) => A002487(i) = A002487(j) and A278219(i) = A278219(j), for all i, j >= 0.
2
1, 2, 3, 4, 3, 5, 6, 7, 3, 8, 9, 10, 6, 11, 12, 13, 3, 11, 14, 15, 9, 16, 17, 18, 6, 19, 17, 20, 12, 15, 21, 22, 3, 23, 24, 25, 14, 26, 27, 28, 9, 29, 30, 31, 17, 32, 33, 34, 6, 35, 27, 36, 17, 37, 38, 39, 12, 40, 33, 39, 21, 25, 41, 42, 3, 15, 43, 39, 24, 44, 45, 46, 14, 47, 48, 49, 27, 50, 51, 46, 9, 52, 48, 53, 30, 54, 55, 56, 17, 57, 58, 59, 33, 60, 61, 62, 6
OFFSET
0,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A002487(n), A278219(n)].
FORMULA
For n >= 1, a(2^n) = 3.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A003188(n) = bitxor(n, n>>1);
Aux324533(n) = [A002487(n), A278219(n)];
v324533 = rgs_transform(vector(1+up_to, n, Aux324533(n-1)));
A324533(n) = v324533[1+n];
CROSSREFS
Cf. also A323889 (compare the scatterplots).
Sequence in context: A366880 A324345 A368695 * A377671 A141128 A160180
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 05 2019
STATUS
approved