The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324331 a(n) = (n-1)^2 - phi(n)*sigma(n), where phi is A000010 and sigma is A000203. 3
 -1, -2, -4, -5, -8, 1, -12, -11, -14, 9, -20, 9, -24, 25, 4, -23, -32, 55, -36, 25, 16, 81, -44, 49, -44, 121, -44, 57, -56, 265, -60, -47, 64, 225, 4, 133, -72, 289, 100, 81, -80, 529, -84, 169, 64, 441, -92, 225, -90, 541, 196, 249, -104, 649, 36, 145, 256, 729, -116, 793 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For squarefree semiprimes n = p*q a(n)=(p-q)^2 is a square. But the converse, a(n) is prime, can happen: see A324332. LINKS Table of n, a(n) for n=1..60. Brian Alspach, Research problems, Problem 18, Discrete Math 40 (1982), page 126. FORMULA a(A006881(n)) = A176881(n)^2. a(n) = A069249(n) - 2*n + 1. - Amiram Eldar, Dec 04 2023 MATHEMATICA Table[(n-1)^2 - EulerPhi[n]*DivisorSigma[1, n], {n, 1, 60}] (* Vaclav Kotesovec, Feb 23 2019 *) PROG (PARI) a(n) = (n-1)^2 - eulerphi(n)*sigma(n); CROSSREFS Cf. A000010, A000203, A006881, A069249, A176881. Cf. A324332, A324333, A324334. Sequence in context: A301521 A097698 A233524 * A101410 A110991 A262942 Adjacent sequences: A324328 A324329 A324330 * A324332 A324333 A324334 KEYWORD sign,easy AUTHOR Michel Marcus, Feb 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 22:37 EDT 2024. Contains 374585 sequences. (Running on oeis4.)