login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324331 a(n) = (n-1)^2 - phi(n)*sigma(n), where phi is A000010 and sigma is A000203. 3
-1, -2, -4, -5, -8, 1, -12, -11, -14, 9, -20, 9, -24, 25, 4, -23, -32, 55, -36, 25, 16, 81, -44, 49, -44, 121, -44, 57, -56, 265, -60, -47, 64, 225, 4, 133, -72, 289, 100, 81, -80, 529, -84, 169, 64, 441, -92, 225, -90, 541, 196, 249, -104, 649, 36, 145, 256, 729, -116, 793 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
For squarefree semiprimes n = p*q a(n)=(p-q)^2 is a square. But the converse, a(n) is prime, can happen: see A324332.
LINKS
Brian Alspach, Research problems, Problem 18, Discrete Math 40 (1982), page 126.
FORMULA
a(A006881(n)) = A176881(n)^2.
a(n) = A069249(n) - 2*n + 1. - Amiram Eldar, Dec 04 2023
MATHEMATICA
Table[(n-1)^2 - EulerPhi[n]*DivisorSigma[1, n], {n, 1, 60}] (* Vaclav Kotesovec, Feb 23 2019 *)
PROG
(PARI) a(n) = (n-1)^2 - eulerphi(n)*sigma(n);
CROSSREFS
Sequence in context: A301521 A097698 A233524 * A101410 A110991 A262942
KEYWORD
sign,easy
AUTHOR
Michel Marcus, Feb 23 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 22:37 EDT 2024. Contains 374585 sequences. (Running on oeis4.)