login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069249
a(n) = n^2 - phi(n)*sigma(n).
5
0, 1, 1, 2, 1, 12, 1, 4, 3, 28, 1, 32, 1, 52, 33, 8, 1, 90, 1, 64, 57, 124, 1, 96, 5, 172, 9, 112, 1, 324, 1, 16, 129, 292, 73, 204, 1, 364, 177, 160, 1, 612, 1, 256, 153, 532, 1, 320, 7, 640, 297, 352, 1, 756, 145, 256, 369, 844, 1, 912, 1, 964, 225, 32, 193, 1476, 1, 592
OFFSET
1,4
COMMENTS
Always >0 for n>0. a(n)=1 if n is prime.
If p is a prime and k is a natural number then a(p^k)=p^(k-1) because a(p^k)=(p^k)^2-sigma(p^k)*phi(p^k) =p^(2k)-(p-1)*p^(k-1)*(p^(k+1)-1)/(p-1)=p^(k-1). If n is a composite number then a(n)>1 and a(1)=0, so n is prime iff a(n)=1. - Farideh Firoozbakht, Nov 15 2005
FORMULA
a(n) = n^2-A062354(n). - R. J. Mathar, Oct 01 2011
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 1 - A065465 = 0.118486... . - Amiram Eldar, Dec 04 2023
EXAMPLE
sigma(10) = 18; phi(10) = 4; 10^2 - sigma(10)*phi(10) = 28. sigma(p) = p+1; phi(p) = p-1; p^2 - (p+1)(p-1) = 1. [From Walter Nissen, Aug 29 2009]
MATHEMATICA
Table[n^2-EulerPhi[n]DivisorSigma[1, n], {n, 70}] (* Harvey P. Dale, Oct 22 2016 *)
PROG
(PARI) a(n)=n^2-eulerphi(n)*sigma(n) \\ Charles R Greathouse IV, Nov 27 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 13 2002
STATUS
approved