|
|
A069249
|
|
n^2-phi(n)*sigma(n).
|
|
4
|
|
|
0, 1, 1, 2, 1, 12, 1, 4, 3, 28, 1, 32, 1, 52, 33, 8, 1, 90, 1, 64, 57, 124, 1, 96, 5, 172, 9, 112, 1, 324, 1, 16, 129, 292, 73, 204, 1, 364, 177, 160, 1, 612, 1, 256, 153, 532, 1, 320, 7, 640, 297, 352, 1, 756, 145, 256, 369, 844, 1, 912, 1, 964, 225, 32, 193, 1476, 1, 592
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Always >0 for n>0. a(n)=1 if n is prime.
If p is a prime and k is a natural number then a(p^k)=p^(k-1) because a(p^k)=(p^k)^2-sigma(p^k)*phi(p^k) =p^(2k)-(p-1)*p^(k-1)*(p^(k+1)-1)/(p-1)=p^(k-1). If n is a composite number then a(n)>1 and a(1)=0, so n is prime iff a(n)=1. - Farideh Firoozbakht, Nov 15 2005
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = n^2-A062354(n). - R. J. Mathar, Oct 01 2011
|
|
EXAMPLE
|
sigma(10) = 18; phi(10) = 4; 10^2 - sigma(10)*phi(10) = 28. sigma(p) = p+1; phi(p) = p-1; p^2 - (p+1)(p-1) = 1. [From Walter Nissen, Aug 29 2009]
|
|
MATHEMATICA
|
Table[n^2-EulerPhi[n]DivisorSigma[1, n], {n, 70}] (* Harvey P. Dale, Oct 22 2016 *)
|
|
PROG
|
(PARI) a(n)=n^2-eulerphi(n)*sigma(n) \\ Charles R Greathouse IV, Nov 27 2013
|
|
CROSSREFS
|
Cf. A164875, A164876, A000203, A000010.
Sequence in context: A005730 A112284 A167401 * A128247 A161150 A163088
Adjacent sequences: A069246 A069247 A069248 * A069250 A069251 A069252
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Benoit Cloitre, Apr 13 2002
|
|
STATUS
|
approved
|
|
|
|