login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A323808
Squares visited by a knight on a spirally numbered board and moving to the lowest available unvisited square at each step and if no unvisited squares are available move one step back.
11
1, 10, 3, 6, 9, 4, 7, 2, 5, 8, 11, 14, 29, 32, 15, 12, 27, 24, 45, 20, 23, 44, 41, 18, 35, 38, 19, 16, 33, 30, 53, 26, 47, 22, 43, 70, 21, 40, 17, 34, 13, 28, 25, 46, 75, 42, 69, 104, 37, 62, 95, 58, 55, 86, 51, 48, 77, 114, 73, 108, 151, 68, 103, 64, 67, 36, 39, 66, 63
OFFSET
1,2
COMMENTS
This is an infinite extension of A316667 with which it agrees for the first 2016 terms. - N. J. A. Sloane, Jan 28 2019
LINKS
M. F. Hasler, Knight tours, OEIS wiki, Nov. 2019.
FORMULA
a(n) = A323809(n-1) + 1. - M. F. Hasler, Nov 06 2019
EXAMPLE
The board is numbered with the square spiral:
17--16--15--14--13 :
| | :
18 5---4---3 12 29
| | | | |
19 6 1---2 11 28
| | | |
20 7---8---9--10 27
| |
21--22--23--24--25--26
See A323809 for examples where "backtracking" happens. - M. F. Hasler, Nov 06 2019
PROG
(PARI) A323808(n)=A323809(n-1)+1 \\ M. F. Hasler, Nov 06 2019
CROSSREFS
The sequences involved in this set of related sequences are A316588, A316328, A316334, A316667, A323808, A323809, A323810, and A323811.
Cf. A326924 & A326922 (using L2-norm), A328908 & A328928 (L1-norm), A328909 & A328929 (sup norm); A326916 & A326918 (digits on spiral), A326413 and A328698 (variants with other tie breaker).
Sequence in context: A316667 A329518 A329519 * A377015 A336208 A330189
KEYWORD
nonn,walk
AUTHOR
Daniël Karssen, Jan 28 2019
STATUS
approved