login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323669
Decimal expansion of 15/(2*Pi^2) = 1/((4/5)*zeta(2)).
4
7, 5, 9, 9, 0, 8, 8, 7, 7, 3, 1, 7, 5, 3, 3, 2, 8, 5, 8, 2, 9, 0, 9, 5, 9, 7, 4, 0, 7, 2, 9, 5, 7, 2, 9, 1, 7, 8, 2, 6, 9, 0, 8, 1, 0, 0, 4, 1, 8, 4, 9, 1, 1, 6, 3, 4, 2, 0, 6, 7, 7, 3, 9, 2, 0, 6, 2, 9, 8, 4, 0, 7, 2, 1, 6, 7, 6, 5
OFFSET
0,1
COMMENTS
This is the limit n -> infinity of (1/n^2)*Phi_1(n) = (1/n^2)*Sum_{k=1..n} psi(k), with Dedekind's psi function psi(k) = k*Product_{p|k} (1 + 1/p) = A001615(k). Distinct primes p dividing k appear, and the empty product for k = 1 is set to 1. See the Walfisz reference, Satz 2., p. 100 (with x -> n, and phi_1(n) = psi(n)).
For the rationals r(n) = (1/n^2)*Phi_1(n) see A327340(n)/A327341(n), n >= 1.
REFERENCES
Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 100, Satz 2.
FORMULA
Equal to 15/(2*Pi^2) = 1/((4/5)*zeta(2)), with 1/zeta(2) = A059956.
EXAMPLE
0.7599088773175332858290959740729572917826908100418491163420677392062984...
MATHEMATICA
RealDigits[15/2/Pi^2, 10, 100][[1]] (* Amiram Eldar, Sep 03 2019 *)
PROG
(PARI) 15/(2*Pi^2) \\ Felix Fröhlich, Sep 04 2019
CROSSREFS
Cf. A001615, A059956 (1/zeta(2)), A327340, A327341.
Sequence in context: A358186 A073823 A351212 * A356526 A304136 A305042
KEYWORD
nonn,cons,easy
AUTHOR
Wolfdieter Lang, Sep 03 2019
STATUS
approved