login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323668
Expansion of e.g.f. exp(exp(2*x)*(BesselI(0,2*x) + BesselI(1,2*x)) - 1).
0
1, 3, 19, 152, 1467, 16445, 208471, 2934321, 45254447, 756995131, 13623709401, 262067291106, 5358900661509, 115953603121881, 2644399031839729, 63346390393538780, 1589177904965680263, 41642328796769014811, 1137083068108603968349, 32287430515011314674632, 951565685429585731747913
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A001700(k)*binomial(n-1,k-1)*a(n-k).
MAPLE
seq(n!*coeff(series(exp(exp(2*x)*(BesselI(0, 2*x)+BesselI(1, 2*x))-1), x=0, 21), x, n), n=0..20); # Paolo P. Lava, Jan 28 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[Exp[2 x] (BesselI[0, 2 x] + BesselI[1, 2 x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Binomial[2 k + 1, k + 1] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]
PROG
(PARI) my(x='x + O('x^25)); Vec(serlaplace(exp(exp(2*x)*(besseli(0, 2*x)+x*besseli(1, 2*x))-1))) \\ Michel Marcus, Jan 24 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 23 2019
STATUS
approved