login
A323666
Expansion of e.g.f. exp(exp(2*x)*BesselI(0,2*x) - 1).
2
1, 2, 10, 64, 498, 4544, 47272, 549448, 7032338, 98034816, 1475781592, 23821854808, 409932257560, 7483462406840, 144320890075608, 2929683071286416, 62402858556637970, 1390821290318306688, 32355429437927804952, 783919832399050511928, 19741529222451177258920, 515813862624032150918280
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A000984(k)*binomial(n-1,k-1)*a(n-k).
MAPLE
seq(n!*coeff(series(exp(exp(2*x)*BesselI(0, 2*x)-1), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 28 2019
MATHEMATICA
nmax = 21; CoefficientList[Series[Exp[Exp[2 x] BesselI[0, 2 x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Binomial[2 k, k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]
PROG
(PARI) my(x='x + O('x^25)); Vec(serlaplace(exp(exp(2*x)*besseli(0, 2*x)-1))) \\ Michel Marcus, Jan 24 2019
CROSSREFS
Sequence in context: A319360 A223127 A361407 * A318814 A371547 A130721
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 23 2019
STATUS
approved