The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327340 Numerator of the rationals r(n) = (1/n^2)*Phi_1(n), with Phi_1(n) = Sum{k=1..n} psi(k), with Dedekind's psi function. 2
 1, 1, 8, 7, 4, 8, 40, 13, 64, 41, 94, 59, 132, 39, 4, 51, 222, 43, 278, 157, 346, 191, 406, 227, 484, 263, 562, 305, 640, 178, 24, 99, 280, 447, 942, 169, 1052, 278, 1168, 31, 1282, 689, 1422, 747, 58, 819, 1686, 99, 1838, 482 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The corresponding denominators are given in A327341. Dedekind's psi(k) = k*Product_{p|k}(1 + 1/p), with primes p, and the empty product is set to 1. See psi(k) = A001615(k), k >= 1. In the Walfisz reference psi(k) = phi_1(k). In the Walfisz reference, Satz 2., p. 100, the approximation for Phi_1(x) = (15/(2*Pi^2))*x^2 + O(x*(log(x))^{2/3}) is given (with B instead of the O() notation). For the constant 15/(2*Pi^2) see A323669 . REFERENCES Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 100, Satz 2. LINKS Eric Weisstein's World of Mathematics, Dedekind Function. Wikipedia, Dedekind psi function. FORMULA a(n) = numerator(r(n)), with the rationals r(n) = (1/n^2)*Sum{k=1..n}(k*Product_{p|k}(1 + 1/p)), with distinct prime p divisors of k (with empty product set to 1 for k = 1), for n >= 1. a(n) = numerator(A173290(n)/n^2). - Amiram Eldar, Nov 24 2022 EXAMPLE The rationals (in lowest terms) begin: 1/1, 1/1, 8/9, 7/8, 4/5, 8/9, 40/49, 13/16, 64/81, 41/50, 94/121, 59/72, 132/169, 39/49, 4/5, 51/64, 222/289, 43/54, 278/361, 157/200, 346/441, 191/242, 406/529, 227/288, 484/625, 263/338, 562/729, 305/392, 640/841, 178/225, 24/31, ... The limit of r(n) for n-> infinity is A323669 = 0.759908877317533285829... r(10^5) is approximatly 0.7599142240 (10 digits). MATHEMATICA psi = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][]); a[n_] := Numerator[Sum[psi[k], {k, 1, n}]/n^2]; Array[a, 50] (* Amiram Eldar, Sep 03 2019 *) CROSSREFS Cf. A001615, A173290, A323669, A327341 (denominators). Sequence in context: A070702 A019870 A019903 * A167222 A076417 A114137 Adjacent sequences: A327337 A327338 A327339 * A327341 A327342 A327343 KEYWORD nonn,frac,easy AUTHOR Wolfdieter Lang, Sep 03 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 10:25 EDT 2023. Contains 361443 sequences. (Running on oeis4.)