login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323176
Prime numbers generated by the formula a(n) = round(c^((5/4)^n)), where c is the real constant given below.
3
113, 367, 1607, 10177, 102217, 1827697, 67201679, 6084503671, 1699344564793, 1940223714629437, 12877001925259260821, 771380135526168946568519, 722912215706743477640066820689, 21079337353575904691781436731789131951, 45166994522409258021988187061430676460306223027, 20822194129240450122637347266336444580153717439156314146339
OFFSET
1,1
COMMENTS
The constant c is given in the article [Plouffe, 2018] with 2600 digits of precision.
LINKS
Simon Plouffe, A set of formulas for primes, arXiv:1901.01849 [math.NT], 2019.
Simon Plouffe, The calculation of p(n) and pi(n), arXiv:2002.12137 [math.NT], 2020.
FORMULA
a(n) = round(c^((5/4)^n)), where c is a real constant starting 43.80468771580293481859664562569089495081037087137495184074061328752670419506...
EXAMPLE
a(1) = round(c^((5/4)^1)) = round(112.69...) = 113,
a(2) = round(c^((5/4)^2)) = round(367.17...) = 367,
a(3) = round(c^((5/4)^3)) = round(1607.2...) = 1607, etc..
MAPLE
# Computes the values according to the formula, v = 43.804..., e = 5/4, m the
# number of terms. Returns the real and the rounded values (primes).
val := proc(s, e, m)
local ll, v, n, kk;
v := s;
ll := [];
for n to m do
v := v^e; ll := [op(ll), v]
end do;
return [ll, map(round, ll)]
end;
CROSSREFS
Sequence in context: A033249 A101217 A142781 * A365581 A111013 A300537
KEYWORD
nonn
AUTHOR
Simon Plouffe, Jan 05 2019
STATUS
approved