login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111013
Prime numbers in A084058.
1
113, 401, 1294393, 18976049, 1064876737, 59752621657, 1865194962833120965649, 183321526083153004322945764563755249, 11875185018427998198607516048921647377541318041456866528702638540422037754393
OFFSET
1,1
COMMENTS
Construct a sequence of fractions r(i)/q(i) from r(0) = q(0) = 1 and recursively r(i)/q(i) = (r(i-1)+2*q(i-1)) /(r(i-1) + q(i-1)).
The sequence contains the numerators r(i) which are prime numbers.
Is this sequence infinite?
REFERENCES
John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
LINKS
MATHEMATICA
Select[LinearRecurrence[{2, 7}, {1, 1}, 135], PrimeQ] (* Amiram Eldar, Jun 30 2024 *)
PROG
(PARI) primenum(n, k, typ) = /* k=mult, typ=1 num, 2 denom. output prime num or denom. */ { local(a, b, x, tmp, v); a=1; b=1; for(x=1, n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1, v=a, v=b); if(isprime(v), print1(v", "); ) ); print(); print(a/b+.) }
CROSSREFS
Cf. A084058.
Sequence in context: A142781 A323176 A365581 * A300537 A342816 A353957
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Oct 02 2005
EXTENSIONS
Definition simplified by R. J. Mathar, Jun 15 2010
STATUS
approved