login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111011
Primes in A002533.
2
7, 19, 73, 241, 411379, 693110401, 80746825394092993, 15848109838244286131940714481, 12238279486576766124458805567902551228138920205718424019, 1732765524527243824670663837908764472971413888795440694899, 20618141429646301085064054485889973597180353561103310272561, 2919234250884982146911220973819117919577845597870261813393281
OFFSET
1,1
COMMENTS
Starting with the fraction 1/1, generate the sequence of fractions A002533(i)/A002532(i) according to the rule: "add top and bottom to get the new bottom, add top and 6 times bottom to get the new top."
The prime numerators of these fractions are listed here, at locations i= 2, 3, 4, 5, 11, 17, 32, 53,... showing prime(4), prime(8), prime(21), prime(53), prime(34719),..
Is there an infinity of primes in this sequence?
a(17) = A002533(7993), which has 4298 digits so can't be included in a b-file. - Robert Israel, May 03 2024
REFERENCES
John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
LINKS
FORMULA
A002533 INTERSECT A000040.
MAPLE
B[0]:= 1: B[1]:= 1: P:= NULL: count:= 0:
for n from 2 while count < 16 do
B[n]:= 2*B[n-1]+5*B[n-2];
if isprime(A[n]) then count:= count+1; P:= P, B[n]; fi
od:
P; # Robert Israel, May 03 2024
MATHEMATICA
Select[LinearRecurrence[{2, 5}, {1, 1}, 125] , PrimeQ[#]&] (* James C. McMahon, May 02 2024 *)
PROG
(PARI) primenum(n, k, typ) = \\ k=mult, typ=1 num, 2 denom. output prime num or denom.
{ local(a, b, x, tmp, v); a=1; b=1;
for(x=1, n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1, v=a, v=b); if(isprime(v), print1(v", "); ) );
print(); print(a/b+.) }
CROSSREFS
Sequence in context: A005516 A152008 A002533 * A144723 A062551 A155390
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Oct 02 2005
EXTENSIONS
Simplified the definition, listed some A002533 indices. - R. J. Mathar, Sep 16 2009
a(10)-a(12) from James C. McMahon, May 02 2024
STATUS
approved