OFFSET
1,1
COMMENTS
Starting with the fraction 1/1, generate the sequence of fractions A002533(i)/A002532(i) according to the rule: "add top and bottom to get the new bottom, add top and 6 times bottom to get the new top."
The prime numerators of these fractions are listed here, at locations i= 2, 3, 4, 5, 11, 17, 32, 53,... showing prime(4), prime(8), prime(21), prime(53), prime(34719),..
Is there an infinity of primes in this sequence?
a(17) = A002533(7993), which has 4298 digits so can't be included in a b-file. - Robert Israel, May 03 2024
REFERENCES
John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
LINKS
Robert Israel, Table of n, a(n) for n = 1..16
MAPLE
B[0]:= 1: B[1]:= 1: P:= NULL: count:= 0:
for n from 2 while count < 16 do
B[n]:= 2*B[n-1]+5*B[n-2];
if isprime(A[n]) then count:= count+1; P:= P, B[n]; fi
od:
P; # Robert Israel, May 03 2024
MATHEMATICA
Select[LinearRecurrence[{2, 5}, {1, 1}, 125] , PrimeQ[#]&] (* James C. McMahon, May 02 2024 *)
PROG
(PARI) primenum(n, k, typ) = \\ k=mult, typ=1 num, 2 denom. output prime num or denom.
{ local(a, b, x, tmp, v); a=1; b=1;
for(x=1, n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1, v=a, v=b); if(isprime(v), print1(v", "); ) );
print(); print(a/b+.) }
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Oct 02 2005
EXTENSIONS
Simplified the definition, listed some A002533 indices. - R. J. Mathar, Sep 16 2009
a(10)-a(12) from James C. McMahon, May 02 2024
STATUS
approved