login
A111009
Starting with the fraction 1/1, the prime numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 4 times bottom to get the new top.
0
5, 13, 41, 1093, 797161, 21523361, 926510094425921, 1716841910146256242328924544641, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013
OFFSET
1,1
COMMENTS
Or, A046717(n) is prime.
Is this sequence infinite?
REFERENCES
Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p 16.
FORMULA
Given c(0)=1, b(0)=1 then for i=1, 2, .. c(i)/b(i) = (c(i-1)+4*b(i-1)) /(c(i-1) + b(i-1)).
A046717 INTERSECT A000040. [From R. J. Mathar, Aug 18 2008]
MATHEMATICA
Select[NestList[(Numerator[#]+4*Denominator[#])/(Numerator[#]+Denominator[#])&, 1/1, 200]//Numerator, PrimeQ] (* Harvey P. Dale, Jan 04 2024 *)
PROG
(PARI) primenum(n, k, typ) = \ k=mult, typ=1 num, 2 denom. ouyput prime num or denom. { local(a, b, x, tmp, v); a=1; b=1; for(x=1, n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1, v=a, v=b); if(isprime(v), print1(v", "); ) ); print(); print(a/b+.) }
CROSSREFS
Cf. A088553. [From R. J. Mathar, Aug 18 2008]
Sequence in context: A352916 A085601 A147718 * A012172 A316536 A211383
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Oct 02 2005
EXTENSIONS
Edited by N. J. A. Sloane, Aug 23 2008
STATUS
approved