login
A111007
Triangle T(n,m) which contains in row n the rounded ordinate value at abscissa m along the upper rim of the circle with diameter n centered at (n/2, 1).
1
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, 1, 3, 4, 4, 4, 3, 1, 1, 3, 4, 4, 4, 4, 3, 1, 1, 4, 4, 5, 5, 5, 4, 4, 1, 1, 4, 5, 5, 5, 5, 5, 5, 4, 1, 1, 4, 5, 6, 6, 6, 6, 6, 5, 4, 1, 1, 4, 5, 6, 6, 6, 6, 6, 6, 5, 4, 1, 1, 4, 5, 6, 7, 7, 7, 7, 7, 6, 5, 4, 1, 1, 4, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 4, 1, 1
OFFSET
0,5
COMMENTS
The points on a circle centered at (xmid,ymid) have ordinate values y = ymid + sqrt(r^2-(x-xmid)^2) for abscissae x, where r is the radius. Let xmid = r = n/2 and ymid = 1. Then T(n,m) is the rounded value of y as m=x runs through the integers from 0 (left rim of the circle) to d=n (right rim).
EXAMPLE
The fifth row is 1,3,3,3,3,1 because after rounding these values fit the diameter 5 circle most closely.
The table starts
1;
1,1;
1,2,1;
1,2,2,1;
1,3,3,3,1;
1,3,3,3,3,1;
1,3,4,4,4,3,1;
1,3,4,4,4,4,3,1;
1,4,4,5,5,5,4,4,1;
1,4,5,5,5,5,5,5,4,1;
1,4,5,6,6,6,6,6,5,4,1;
MAPLE
A111007 := proc(n, m) 1+sqrt((n/2)^2-(m-n/2)^2) ; round(%) ; end proc: seq(seq(A111007(n, m), m=0..n), n=0..10) ; # R. J. Mathar, Jun 15 2010
CROSSREFS
Sequence in context: A134542 A106254 A117147 * A176353 A103691 A103441
KEYWORD
nonn,tabl,easy
AUTHOR
Ben Paul Thurston, Nov 19 2006
EXTENSIONS
Definition clarified, value at n=0 inserted by R. J. Mathar, Jun 15 2010
STATUS
approved