This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152008 Primes which are divisors of numbers of the form (2^phi(3^k) - 1)/3^k. 1
 7, 19, 73, 163, 487, 1459, 2593, 17497, 39367, 52489, 71119, 80191, 87211, 97687, 135433, 139483, 209953, 262657, 379081 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The primes in this sequence have the property that with the exception of 7 they are congruent to 1 mod 18 and with the exception of 7, 19, 73 are congruent to 1 mod 54. LINKS MATHEMATICA a = {}; Do[k = ((2^EulerPhi[3^(w + 1)] - 1)/3^(w + 1))/((2^EulerPhi[3^w] - 1)/3^w); Do[If[Mod[k, Prime[n]] == 0, AppendTo[a, Prime[n]]; Print[Prime[n]]], {n, PrimePi[2], PrimePi[379081]}], {w, 1, 20}]; Union[a] (*Artur Jasinski*) CROSSREFS Cf. A008776, A152007. Sequence in context: A155463 A318483 A005516 * A002533 A111011 A144723 Adjacent sequences:  A152005 A152006 A152007 * A152009 A152010 A152011 KEYWORD hard,nonn AUTHOR Artur Jasinski, Nov 19 2008 EXTENSIONS Edited by N. J. A. Sloane, Nov 26 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 11:44 EDT 2019. Contains 325139 sequences. (Running on oeis4.)