login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323178
a(n) = 1 + 100*n^2 for n >= 0.
0
1, 101, 401, 901, 1601, 2501, 3601, 4901, 6401, 8101, 10001, 12101, 14401, 16901, 19601, 22501, 25601, 28901, 32401, 36101, 40001, 44101, 48401, 52901, 57601, 62501, 67601, 72901, 78401, 84101, 90001, 96101, 102401, 108901
OFFSET
0,2
COMMENTS
Terms of A261327 ending in 1 (01 for n > 0.)
a(n) mod 9 = period 9: repeat [1, 2, 5, 1, 8, 8, 1, 5, 2] = A275704(n+3).
(Analogous sequence: b(n) = 29 + 100*n*(n+1) = A261327(A017329) = 29, 229, 629, ... .)
FORMULA
a(n) = A261327(A008602(n)).
Recurrence: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2 with initial values a(0) = 1, a(1) = 101 and a(2) = 401.
From Stefano Spezia, Jan 06 2019: (Start)
O.g.f.: (-1 - 98*x - 101*x^2)/(-1 + x)^3.
E.g.f.: exp(x)*(1 + 100*x + 100*x^2).
(End)
MATHEMATICA
a[n_] := 1 + 100*n^2 ; Array[a, 50, 0] (* or *)
CoefficientList[Series[(-1 - 98 x - 101 x^2)/(-1 + x)^3, {x, 0, 50}], x] (* or *)
CoefficientList[Series[E^x (1 + 100 x + 100 x^2), {x, 0, 50}], x]*Table[n!, {n, 0, 50}] (* Stefano Spezia, Jan 06 2019 *)
CROSSREFS
Subsequence of A017281.
Sequence in context: A158192 A327347 A062800 * A031698 A055438 A142692
KEYWORD
nonn
AUTHOR
Paul Curtz, Jan 06 2019
EXTENSIONS
Corrected and extended (recurrence formula) by Werner Schulte, Feb 18 2019
STATUS
approved