login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A323177
a(n) = X * prime(n+1) - B, where B = primorial(n) and X is the smallest number that is larger than B/prime(n+1) and coprime to B.
1
1, 19, 19, 43, 17, 43, 1, 31, 41, 43, 137, 199, 103, 59, 79, 103, 67, 439, 331, 191, 233, 617, 211, 263, 881, 131, 617, 113, 761, 499, 1913, 163, 467, 401, 1831, 1831, 229, 397, 1451, 853, 449, 797, 1553, 239, 2383, 1049, 401, 367, 2441, 613, 691, 1567, 971, 3613, 1249, 1259, 811, 617, 3089
OFFSET
1,2
COMMENTS
Primorial(n) is the product of the first n primes (A002110), while prime(n) is the n-th prime.
The first 150000 terms are all either 1 or prime. In the first 150000 terms, this sequence generates 142977 unique primes.
a(n) = 1 for n = 1, 7, 232, 430 ... When a(n) > 1, it is greater than prime(n).
EXAMPLE
When n = 4, primorial(n) = 210, primorial(n)/prime(n+1) = 210/11 ~= 19.09..., thus X = 23 and a(n) = 23*11 - 210 = 43.
MATHEMATICA
Array[Block[{p = #1, B = #2, X = Floor[#2/#1] + 1}, While[GCD[B, X] != 1, X++]; X p - B] & @@ {First@ #1, Times @@ #2} & @@ TakeDrop[Prime@ Range@ #, -1] &, 60, 2] (* Michael De Vlieger, Jan 07 2019 *)
CROSSREFS
Cf. A002110 (primorial).
Sequence in context: A272897 A040343 A022353 * A261756 A070853 A165840
KEYWORD
nonn
AUTHOR
Dmitry Kamenetsky, Jan 06 2019
STATUS
approved