This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323062 Numbers m > 0 such that floor(sqrt(2^(2m-1))) > 1/2 + sqrt(1/4 + 2^(2m-1) - 2^m). 1
 8, 9, 10, 11, 20, 24, 47, 51, 54, 57, 58, 59, 62, 63, 69, 81, 82, 106, 128, 147, 148, 149, 150, 161, 162, 165, 181, 182, 183, 186, 200, 201, 214, 217, 218, 219, 225, 226, 227, 228, 232, 241, 245, 248, 249, 258, 270, 273, 274, 275, 276, 280, 281, 282, 283, 286 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS m is a term if and only if floor(sqrt(2^(2m-1))) is a term of A323192. Equivalently, a(n) is the number of bits of the binary representation of A323192(n). LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A070939(A323192(n)) = (A070939(A323192(n)^2)+1)/2. A323192(n) = A000196(2^(2*a(n)-1)). PROG (Python) from sympy import integer_nthroot A323062_list = [k for k in range(1, 10000) if (2*integer_nthroot(2**(2*k-1), 2)[0]-1)**2 > 1 + 4*(2**(2*k-1) - 2**k)] # Chai Wah Wu, Jan 11 2019 CROSSREFS Cf. A000196, A070939, A323192. Sequence in context: A247455 A280290 A138581 * A097363 A152870 A181723 Adjacent sequences:  A323059 A323060 A323061 * A323063 A323064 A323065 KEYWORD nonn AUTHOR Chai Wah Wu, Jan 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 00:21 EDT 2019. Contains 328135 sequences. (Running on oeis4.)