login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322866 Lexicographically earliest such sequence a that a(i) = a(j) => A046523(A322863(i)) = A046523(A322863(j)) for all i, j. 3
1, 1, 1, 2, 1, 2, 1, 3, 3, 2, 1, 3, 1, 2, 3, 4, 1, 5, 1, 3, 3, 2, 1, 4, 6, 2, 7, 3, 1, 5, 1, 7, 3, 2, 6, 8, 1, 2, 3, 4, 1, 5, 1, 3, 7, 2, 1, 7, 8, 9, 3, 3, 1, 7, 6, 4, 3, 2, 1, 8, 1, 2, 7, 7, 6, 5, 1, 3, 3, 9, 1, 3, 1, 2, 9, 3, 8, 5, 1, 7, 7, 2, 1, 8, 6, 2, 3, 4, 1, 7, 8, 3, 3, 2, 6, 7, 1, 10, 7, 11, 1, 5, 1, 4, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Restricted growth sequence transform of A046523(A322863(n)).

Equally, restricted growth sequence transform of A278222(A322865(n)).

For all i, j: a(i) = a(j) => A322867(i) = A322867(j).

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

Index entries for sequences related to binary expansion of n

Index entries for sequences computed from indices in prime factorization

PROG

(PARI)

up_to = 8192;

rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };

A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };

A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523

A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};

A122111(n) = if(1==n, n, prime(bigomega(n))*A122111(A064989(n)));

A322863(n) = if(!n, 1, A005940(1+A122111(n)));

v322866 = rgs_transform(vector(up_to, n, A046523(A322863(n))));

A322866(n) = v322866[n];

CROSSREFS

Cf. A005940, A046523, A122111, A278222, A286622, A322863, A322865, A322867.

Sequence in context: A232396 A270096 A039636 * A328847 A331175 A331954

Adjacent sequences:  A322863 A322864 A322865 * A322867 A322868 A322869

KEYWORD

nonn

AUTHOR

Antti Karttunen, Dec 30 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 01:41 EDT 2021. Contains 346269 sequences. (Running on oeis4.)