login
A322866
Lexicographically earliest such sequence a that a(i) = a(j) => A046523(A322863(i)) = A046523(A322863(j)) for all i, j.
3
1, 1, 1, 2, 1, 2, 1, 3, 3, 2, 1, 3, 1, 2, 3, 4, 1, 5, 1, 3, 3, 2, 1, 4, 6, 2, 7, 3, 1, 5, 1, 7, 3, 2, 6, 8, 1, 2, 3, 4, 1, 5, 1, 3, 7, 2, 1, 7, 8, 9, 3, 3, 1, 7, 6, 4, 3, 2, 1, 8, 1, 2, 7, 7, 6, 5, 1, 3, 3, 9, 1, 3, 1, 2, 9, 3, 8, 5, 1, 7, 7, 2, 1, 8, 6, 2, 3, 4, 1, 7, 8, 3, 3, 2, 6, 7, 1, 10, 7, 11, 1, 5, 1, 4, 9
OFFSET
1,4
COMMENTS
Restricted growth sequence transform of A046523(A322863(n)).
Equally, restricted growth sequence transform of A278222(A322865(n)).
For all i, j: a(i) = a(j) => A322867(i) = A322867(j).
PROG
(PARI)
up_to = 8192;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A122111(n) = if(1==n, n, prime(bigomega(n))*A122111(A064989(n)));
A322863(n) = if(!n, 1, A005940(1+A122111(n)));
v322866 = rgs_transform(vector(up_to, n, A046523(A322863(n))));
A322866(n) = v322866[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 30 2018
STATUS
approved