login
A322865
a(n) = A000265(A122111(n)).
9
1, 1, 1, 3, 1, 3, 1, 5, 9, 3, 1, 5, 1, 3, 9, 7, 1, 15, 1, 5, 9, 3, 1, 7, 27, 3, 25, 5, 1, 15, 1, 11, 9, 3, 27, 21, 1, 3, 9, 7, 1, 15, 1, 5, 25, 3, 1, 11, 81, 45, 9, 5, 1, 35, 27, 7, 9, 3, 1, 21, 1, 3, 25, 13, 27, 15, 1, 5, 9, 45, 1, 33, 1, 3, 75, 5, 81, 15, 1, 11, 49, 3, 1, 21, 27, 3, 9, 7, 1, 35, 81, 5, 9, 3, 27, 13, 1, 135, 25, 63, 1, 15, 1, 7, 75
OFFSET
1,4
FORMULA
a(n) = A000265(A122111(n)).
a(n) = A122111(A322820(n)).
A000005(a(n)) = A322813(n).
A000203(a(n)) = A322819(n).
A122111(a(n)) = A322820(n).
A000120(a(n)) = A322867(n).
MATHEMATICA
Array[#/2^IntegerExponent[#, 2] &@ If[# < 3, 1, Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@ #]] &, 105] (* Michael De Vlieger, Dec 31 2018, after JungHwan Min at A122111 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A122111(n) = if(1==n, n, prime(bigomega(n))*A122111(A064989(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 30 2018
STATUS
approved