login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322583 a(n) is the number of factorizations of n into factorial numbers larger than one; a(1) = 1. 8
1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,24

COMMENTS

Values 1..7 occur for the first time at n = 1, 24, 576, 13824, 69120, 414720, 1658880.

In range 1..69120 differs from A034876 only at positions n = 1, 2, 9, 10 and 16.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..69120

Index entries for sequences related to factorial numbers

FORMULA

a(24^n) = a(A009968(n)) = n+1.

EXAMPLE

a(4) = 1 because 4 = 2! * 2!.

a(24) = 2 because 24 = 4! = 3! * 2! * 2!.

a(576) = 3 because 576 = 4! * 4! = 4! * 3! * 2! * 2! = (3!)^2 * (2!)^4.

a(13824) = 4 because 13824 = (4!)^3 = (4!)^2 * 3! * (2!)^2 = 4! * (3!)^2 * (2!)^4 = (3!)^3 * (2!)^6.

a(69120) = 5 because 69120 = 6! * 4! * 2! * 2! = 6! * 3! * 2! * 2! * 2! * 2! = 5! * 3! * 3! * 2! * 2! * 2! * 2! = 5! * 4! * 4! = 5! * 4! * 3! * 2! * 2!. Note that 69120 < 24^4 = 331776.

PROG

(PARI) A322583(n, m=n) = if(1==n, 1, my(s=0); for(i=2, oo, my(f=i!); if(f>m, return(s)); if(!(n%f), s += A322583(n/f, f))));

(PARI)

A034968(n) = { my(s=0, b=2, d); while(n, d = (n%b); s += d; n = (n-d)/b; b++); (s); };

A322583(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(1==A034968(d)), s += A322583(n/d, d))); (s));

CROSSREFS

Cf. A000142, A001013 (positions of nonzero terms), A009968, A034876, A034968.

Sequence in context: A086078 A323913 A014082 * A102354 A157228 A193138

Adjacent sequences:  A322580 A322581 A322582 * A322584 A322585 A322586

KEYWORD

nonn

AUTHOR

Antti Karttunen, Dec 25 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 25 14:29 EDT 2019. Contains 326324 sequences. (Running on oeis4.)