login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322148
Regular triangle where T(n,k) is the number of labeled connected multigraphs with loops with n edges and k vertices.
3
1, 1, 1, 1, 3, 3, 1, 6, 16, 16, 1, 10, 51, 127, 125, 1, 15, 126, 574, 1347, 1296, 1, 21, 266, 1939, 8050, 17916, 16807, 1, 28, 504, 5440, 35210, 135156, 286786, 262144, 1, 36, 882, 13387, 125730, 736401, 2642122, 5368728, 4782969, 1, 45, 1452, 29854, 388190, 3239491, 17424610, 58925728, 115089813, 100000000
OFFSET
0,5
LINKS
EXAMPLE
Triangle begins:
1
1 1
1 3 3
1 6 16 16
1 10 51 127 125
1 15 126 574 1347 1296
1 21 266 1939 8050 17916 16807
MATHEMATICA
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[If[n==0, 1, Length[Select[multsubs[multsubs[Range[k], 2], n], And[Union@@#==Range[k], Length[csm[#]]==1]&]]], {n, 0, 5}, {k, 1, n+1}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, 1/(1 - x + O(x*x^n) )^binomial(j+1, 2)))[1..n+1]])}
{ my(T=M(10)); for(n=1, #T, print(T[n, ][1..n])) } \\ Andrew Howroyd, Nov 29 2018
CROSSREFS
Row sums are A322152. Last column is A000272.
Sequence in context: A117279 A234251 A049323 * A084144 A306759 A214362
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 28 2018
EXTENSIONS
Offset corrected and terms a(28) and beyond from Andrew Howroyd, Nov 29 2018
STATUS
approved