login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322089
One of the two successive approximations up to 13^n for 13-adic integer sqrt(-3). Here the 6 (mod 13) case (except for n = 0).
4
0, 6, 45, 2073, 15255, 300865, 2899916, 22207152, 273201220, 7614777709, 92450772693, 1333177199334, 4917497987408, 191302178967256, 1705677711928521, 48954194340319989, 202511873382592260, 3529594919298491465, 38131258596823843197, 38131258596823843197, 8809653000849500507259
OFFSET
0,2
COMMENTS
For n > 0, a(n) is the unique solution to x^2 == -3 (mod 13^n) in the range [0, 13^n - 1] and congruent to 6 modulo 13.
A322090 is the approximation (congruent to 7 mod 13) of another square root of -3 over the 13-adic field.
FORMULA
For n > 0, a(n) = 13^n - A322090(n).
a(n) = Sum_{i=0..n-1} A322091(i)*13^i.
a(n) = A286840(n)*A322086(n) mod 13^n = A286841(n)*A322085(n) mod 13^n.
a(n) == L(13^n,6) (mod 13^n) == (3 + sqrt(10))^(13^n) + (3 - sqrt(10))^(13^n) (mod 13^n), where L(n,x) denotes the n-th Lucas polynomial, the n-th row polynomial of A114525. - Peter Bala, Dec 05 2022
EXAMPLE
6^2 = 36 = 3*13 - 3.
45^2 = 2025 = 12*13^2 - 3.
2073^2 = 4297329 = 1956*13^3 - 3.
PROG
(PARI) a(n) = truncate(sqrt(-3+O(13^n)))
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Nov 26 2018
STATUS
approved