|
|
A322054
|
|
Number of decimal strings of length n that do not contain a specific string xx (where x is a single digit).
|
|
4
|
|
|
10, 99, 981, 9720, 96309, 954261, 9455130, 93684519, 928256841, 9197472240, 91131561729, 902961305721, 8946835807050, 88648174014939, 878355088397901, 8703029361715560, 86232460051021149, 854419404714630381, 8465866782890863770
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
See A322053 for the number that do contain the specified string.
|
|
LINKS
|
|
|
FORMULA
|
G.f. = x*(10+9*x)/(1-9*x-9*x^2).
a(n) = 9*a(n-1)+9*a(n-2) for n >= 3.
|
|
EXAMPLE
|
Suppose the string is 00. At length 2 there are 99 strings that do not contain it. At length 3 there are 19 strings that do not contain it, 000, 00x, and x00, where x is any nonzero digit. So a(3) = 1000-19 = 981.
|
|
MATHEMATICA
|
T[n_, k_] := LinearRecurrence[{n - 1, n - 1}, {n, n^2 - 1}, k];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|