|
|
A322052
|
|
Number of decimal strings of length n that contain a specific string xy where x and y are distinct digits.
|
|
4
|
|
|
0, 1, 20, 299, 3970, 49401, 590040, 6850999, 77919950, 872348501, 9645565060, 105583302099, 1146187455930, 12356291257201, 132416725116080, 1411810959903599, 14985692873919910, 158445117779295501, 1669465484919035100, 17536209731411055499, 183692631829191519890, 1919390108560504143401
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
See A004189 for the number that do not contain the specified string.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x^2/((1-10*x)*(1-10*x+x^2)).
|
|
EXAMPLE
|
Suppose the desired string is 03. At length 2 that is the only possibility. At length 3 there are 20 strings that contain it: 03d and d03, where d is any digit.
|
|
MAPLE
|
f:= gfun:-rectoproc({10*a(n) - 101*a(n + 1) + 20*a(n + 2) - a(n + 3), a(0) = 0, a(1) = 0, a(2) = 1}, a(n), remember):
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|