login
A250014
T(n,k)=Number of length n+5 0..k arrays with no six consecutive terms having the maximum of any three terms equal to the minimum of the remaining three terms
14
20, 300, 20, 2040, 520, 20, 8840, 5200, 912, 20, 28860, 30360, 13512, 1612, 20, 77700, 125780, 106352, 35440, 2864, 20, 182000, 412160, 558588, 375756, 93384, 5102, 20, 383760, 1140160, 2224848, 2499284, 1332504, 246560, 9090, 20, 745380, 2776080
OFFSET
1,1
COMMENTS
Table starts
.20...300.....2040......8840.......28860........77700........182000
.20...520.....5200.....30360......125780.......412160.......1140160
.20...912....13512....106352......558588......2224848.......7259024
.20..1612....35440....375756.....2499284.....12088256......46481536
.20..2864....93384...1332504....11215276.....65834856.....298220320
.20..5102...246560...4732480....50383892....358850926....1914587120
.20..9090...651144..16813550...226419876...1956551556...12294501768
.20.16272..1723328..59817840..1018508340..10675467072...78993574080
.20.29158..4564240.212915478..4583261868..58265451392..507664903912
.20.52262.12092304.758003332.20627283972.318035896726.3262820072464
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [linear recurrence of order 55]
Empirical for row n:
n=1: a(n) = n^6 + 3*n^5 + 5*n^4 + 5*n^3 + 4*n^2 + 2*n
n=2: a(n) = n^7 + 2*n^6 + 4*n^5 + 5*n^4 + (17/3)*n^3 + 3*n^2 - (2/3)*n
n=3: [polynomial of degree 8]
n=4: [polynomial of degree 9]
n=5: [polynomial of degree 10]
n=6: [polynomial of degree 11]
n=7: [polynomial of degree 12]
EXAMPLE
Some solutions for n=3 k=4
..2....2....0....2....3....1....0....3....3....0....0....0....1....4....3....4
..4....0....1....3....0....0....3....0....1....2....2....4....3....3....2....0
..3....2....0....1....3....1....0....0....2....1....3....1....2....1....4....3
..0....1....2....1....1....3....4....0....0....1....3....2....3....0....4....4
..1....0....3....0....3....2....2....2....4....4....2....1....1....3....1....4
..4....3....3....4....1....4....0....1....1....2....4....3....3....2....1....0
..1....4....1....2....3....4....4....3....3....1....0....0....2....0....0....2
..4....4....3....2....2....4....4....0....4....3....2....2....3....3....3....0
CROSSREFS
Sequence in context: A001708 A016255 A322052 * A291256 A250015 A344197
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 10 2014
STATUS
approved