%I #4 Nov 10 2014 15:45:47
%S 20,300,20,2040,520,20,8840,5200,912,20,28860,30360,13512,1612,20,
%T 77700,125780,106352,35440,2864,20,182000,412160,558588,375756,93384,
%U 5102,20,383760,1140160,2224848,2499284,1332504,246560,9090,20,745380,2776080
%N T(n,k)=Number of length n+5 0..k arrays with no six consecutive terms having the maximum of any three terms equal to the minimum of the remaining three terms
%C Table starts
%C .20...300.....2040......8840.......28860........77700........182000
%C .20...520.....5200.....30360......125780.......412160.......1140160
%C .20...912....13512....106352......558588......2224848.......7259024
%C .20..1612....35440....375756.....2499284.....12088256......46481536
%C .20..2864....93384...1332504....11215276.....65834856.....298220320
%C .20..5102...246560...4732480....50383892....358850926....1914587120
%C .20..9090...651144..16813550...226419876...1956551556...12294501768
%C .20.16272..1723328..59817840..1018508340..10675467072...78993574080
%C .20.29158..4564240.212915478..4583261868..58265451392..507664903912
%C .20.52262.12092304.758003332.20627283972.318035896726.3262820072464
%H R. H. Hardin, <a href="/A250014/b250014.txt">Table of n, a(n) for n = 1..640</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: [linear recurrence of order 55]
%F Empirical for row n:
%F n=1: a(n) = n^6 + 3*n^5 + 5*n^4 + 5*n^3 + 4*n^2 + 2*n
%F n=2: a(n) = n^7 + 2*n^6 + 4*n^5 + 5*n^4 + (17/3)*n^3 + 3*n^2 - (2/3)*n
%F n=3: [polynomial of degree 8]
%F n=4: [polynomial of degree 9]
%F n=5: [polynomial of degree 10]
%F n=6: [polynomial of degree 11]
%F n=7: [polynomial of degree 12]
%e Some solutions for n=3 k=4
%e ..2....2....0....2....3....1....0....3....3....0....0....0....1....4....3....4
%e ..4....0....1....3....0....0....3....0....1....2....2....4....3....3....2....0
%e ..3....2....0....1....3....1....0....0....2....1....3....1....2....1....4....3
%e ..0....1....2....1....1....3....4....0....0....1....3....2....3....0....4....4
%e ..1....0....3....0....3....2....2....2....4....4....2....1....1....3....1....4
%e ..4....3....3....4....1....4....0....1....1....2....4....3....3....2....1....0
%e ..1....4....1....2....3....4....4....3....3....1....0....0....2....0....0....2
%e ..4....4....3....2....2....4....4....0....4....3....2....2....3....3....3....0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 10 2014