login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179558
a(1)=10; a(n) = a(n-1)*10 - 5^(n-2).
1
10, 99, 985, 9825, 98125, 980625, 9803125, 98015625, 980078125, 9800390625, 98001953125, 980009765625, 9800048828125, 98000244140625, 980001220703125, 9800006103515625, 98000030517578125, 980000152587890625, 9800000762939453125, 98000003814697265625
OFFSET
1,1
FORMULA
From Colin Barker, Oct 03 2015: (Start)
a(n) = 15*a(n-1) - 50*a(n-2) for n > 2.
G.f.: -x*(51*x - 10)/((5*x - 1)*(10*x - 1)). (End)
E.g.f.: (49*exp(10*x) + 2*exp(5*x) - 51)/50. - Stefano Spezia, Mar 02 2023
MATHEMATICA
a[1] := 10; a[n_] := a[n] = 10 a[n - 1] - 5^(n - 2); Array[a@ # &, {20}] (* Michael De Vlieger, Oct 03 2015 *)
nxt[{n_, a_}] := {n + 1, 10*a - 5^(n - 1)}; NestList[nxt, {1, 10}, 20][[All, 2]] (* or *) LinearRecurrence[{15, -50}, {10, 99}, 20] (* Harvey P. Dale, Aug 01 2020 *)
PROG
(PARI) Vec(-x*(51*x-10)/((5*x-1)*(10*x-1)) + O(x^30)) \\ Colin Barker, Oct 03 2015
(PARI) a(n) = if(n<2, 10, a(n-1)*10 - 5^(n-2));
vector(30, n, a(n)) \\ Altug Alkan, Oct 03 2015
(PARI) a(n) = my(t=5^(n-2)); (49*t)<<(n-1) + t; \\ Kevin Ryde, Mar 02 2023
CROSSREFS
Sequence in context: A242633 A004189 A322054 * A179556 A179477 A179555
KEYWORD
nonn,easy
AUTHOR
Mark Dols, Jul 19 2010
STATUS
approved