login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322024
Lexicographically earliest such sequence a that a(i) = a(j) => A014197(i) = A014197(j) and A081373(i) = A081373(j), for all i, j. Here A081373(n) gives the number of k, 1 <= k <= n, with phi(k) = phi(n), while A014197(n) gives the number of integers m with phi(m) = n.
2
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 7, 14, 3, 15, 3, 10, 7, 16, 3, 17, 3, 18, 7, 10, 3, 19, 3, 10, 7, 20, 3, 21, 3, 22, 10, 14, 3, 23, 7, 24, 3, 16, 3, 16, 7, 25, 7, 14, 3, 26, 3, 7, 10, 27, 3, 17, 3, 10, 3, 28, 3, 29, 3, 24, 10, 30, 7, 31, 3, 15, 3, 16, 3, 32, 3, 10, 3, 33, 3, 34, 7, 2, 10, 7, 10, 35, 3, 24, 24, 21, 3, 28, 3, 2, 10
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A014197(n), A081373(n)].
LINKS
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))}; \\ From A014197
v081373 = ordinal_transform(vector(up_to, n, eulerphi(n)));
A081373(n) = v081373[n];
v322024 = rgs_transform(vector(up_to, n, [A014197(n), A081373(n)]));
A322024(n) = v322024[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 29 2018
STATUS
approved