login
A322022
Lexicographically earliest such sequence a that a(i) = a(j) => A305891(i) = A305891(j) and A319697(i) = A319697(j), for all i, j.
2
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 11, 15, 3, 16, 7, 17, 18, 19, 3, 20, 3, 21, 11, 22, 11, 23, 3, 24, 11, 25, 3, 26, 3, 27, 28, 29, 3, 30, 7, 31, 11, 32, 3, 33, 11, 34, 11, 35, 3, 36, 3, 37, 28, 38, 11, 39, 3, 40, 11, 39, 3, 41, 3, 42, 28, 43, 11, 44, 3, 45, 46, 47, 3, 48, 11, 49, 11, 50, 3, 51, 11, 52, 11, 53, 11, 54, 3, 55, 28
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A305891(n), A319697(n)], or equally, of the triple [A007814(n), A046523(n), A319697(n)].
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A007814(n) = valuation(n, 2);
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A319697(n) = sumdiv(n, d, (!(d%2))*issquarefree(d)*d);
v322022 = rgs_transform(vector(up_to, n, [A007814(n), A046523(n), A319697(n)]));
A322022(n) = v322022[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 29 2018
STATUS
approved