Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Dec 02 2018 20:53:34
%S 1,2,3,4,3,5,3,6,7,8,3,9,3,10,3,11,3,12,3,13,7,14,3,15,3,10,7,16,3,17,
%T 3,18,7,10,3,19,3,10,7,20,3,21,3,22,10,14,3,23,7,24,3,16,3,16,7,25,7,
%U 14,3,26,3,7,10,27,3,17,3,10,3,28,3,29,3,24,10,30,7,31,3,15,3,16,3,32,3,10,3,33,3,34,7,2,10,7,10,35,3,24,24,21,3,28,3,2,10
%N Lexicographically earliest such sequence a that a(i) = a(j) => A014197(i) = A014197(j) and A081373(i) = A081373(j), for all i, j. Here A081373(n) gives the number of k, 1 <= k <= n, with phi(k) = phi(n), while A014197(n) gives the number of integers m with phi(m) = n.
%C Restricted growth sequence transform of the ordered pair [A014197(n), A081373(n)].
%H Antti Karttunen, <a href="/A322024/b322024.txt">Table of n, a(n) for n = 1..65537</a>
%o (PARI)
%o up_to = 65537;
%o ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))}; \\ From A014197
%o v081373 = ordinal_transform(vector(up_to,n,eulerphi(n)));
%o A081373(n) = v081373[n];
%o v322024 = rgs_transform(vector(up_to, n, [A014197(n), A081373(n)]));
%o A322024(n) = v322024[n];
%Y Cf. A014197, A081373, A305896, A319339, A322023.
%K nonn
%O 1,2
%A _Antti Karttunen_, Nov 29 2018