login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321922
Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in s(u), where u and v are integer partitions of n, H is Heinz number, h is homogeneous symmetric functions, and s is Schur functions.
0
1, 1, 0, -1, 1, 1, 0, 0, -1, 1, 0, 1, -2, 1, 1, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, -1, 1, 0, -1, 1, 2, -3, 1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, -1, 0, 1, 0, 0, -1, 1, 2, -2, -1, 1, 0
OFFSET
1,13
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Tetrangle begins (zeroes not shown):
(1): 1
.
(2): 1
(11): -1 1
.
(3): 1
(21): -1 1
(111): 1 -2 1
.
(4): 1
(22): 1 -1
(31): -1 1
(211): 1 -1 -1 1
(1111): -1 1 2 -3 1
.
(5): 1
(41): -1 1
(32): -1 1
(221): 1 -1 1 -1
(311): 1 -1 -1 1
(2111): -1 1 2 -2 -1 1
(11111): 1 -2 -2 3 3 -4 1
For example, row 14 gives: s(32) = h(32) - h(41).
CROSSREFS
Row sums are A155972. This is a regrouping of the triangle A321758.
Sequence in context: A203905 A309142 A064532 * A362496 A360003 A287146
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 22 2018
STATUS
approved