login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321758
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in s(u), where H is Heinz number, h is homogeneous symmetric functions, and s is Schur functions.
1
1, 1, 1, 0, -1, 1, 1, 0, 0, -1, 1, 0, 1, 0, 0, 0, 0, 1, -2, 1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 2, -3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,19
COMMENTS
Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Triangle begins:
1
1
1 0
-1 1
1 0 0
-1 1 0
1 0 0 0 0
1 -2 1
0 1 -1 0 0
-1 0 1 0 0
1 0 0 0 0 0 0
1 -1 -1 1 0
1 0 0 0 0 0 0 0 0 0 0
-1 1 0 0 0 0 0
0 -1 1 0 0 0 0
-1 1 2 -3 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 -1 1 -1 0 0
For example, row 18 gives: s(221) = -h(32) + h(41) + h(221) - h(311).
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved