login
A321823
a(n) = Sum_{d|n, d==1 mod 4} d^7 - Sum_{d|n, d==3 mod 4} d^7.
3
1, 1, -2186, 1, 78126, -2186, -823542, 1, 4780783, 78126, -19487170, -2186, 62748518, -823542, -170783436, 1, 410338674, 4780783, -893871738, 78126, 1800262812, -19487170, -3404825446, -2186, 6103593751, 62748518, -10455572420, -823542
OFFSET
1,3
FORMULA
a(n) = a(A000265(n)). - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (-1)^(k-1)*(2*k - 1)^7*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 06 2018
Multiplicative with a(2^e) = 1, and for an odd prime p, ((p^7)^(e+1)-1)/(p^7-1) if p == 1 (mod 4) and ((-p^7)^(e+1)-1)/(-p^7-1) if p == 3 (mod 4). - Amiram Eldar, Sep 27 2023
a(n) = Sum_{d|n} d^7*sin(d*Pi/2). - Ridouane Oudra, Aug 17 2024
MATHEMATICA
s[n_, r_] := DivisorSum[n, #^7 &, Mod[#, 4] == r &]; a[n_] := s[n, 1] - s[n, 3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
f[p_, e_] := If[Mod[p, 4] == 1, ((p^7)^(e+1)-1)/(p^7-1), ((-p^7)^(e+1)-1)/(-p^7-1)]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Sep 27 2023 *)
PROG
(PARI) apply( A321823(n)=sumdiv(n>>valuation(n, 2), d, (2-d%4)*d^7), [1..40]) \\ M. F. Hasler, Nov 26 2018
CROSSREFS
Column k=7 of A322143.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A000265.
Sequence in context: A059757 A068304 A152816 * A215960 A376143 A279070
KEYWORD
sign,easy,mult
AUTHOR
N. J. A. Sloane, Nov 24 2018
STATUS
approved