The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321599 Decimal expansion of a constant q such that Sum_{n>0} q^(n^2) / (1 + q^n)^(n+1) = 1. 0
 2, 0, 8, 5, 1, 2, 4, 1, 1, 7, 6, 3, 4, 3, 9, 3, 7, 2, 3, 8, 0, 3, 3, 6, 8, 6, 0, 5, 9, 7, 5, 1, 0, 4, 9, 2, 6, 4, 6, 6, 4, 4, 9, 8, 4, 9, 1, 7, 0, 0, 5, 6, 0, 3, 9, 9, 1, 6, 6, 8, 2, 0, 4, 7, 5, 6, 8, 5, 4, 5, 9, 4, 7, 2, 6, 8, 3, 3, 8, 0, 6, 0, 8, 6, 3, 3, 6, 8, 5, 7, 2, 8, 4, 7, 5, 3, 9, 1, 6, 6, 6, 2, 3, 2, 0, 2, 9, 6, 0, 5, 2, 3, 7, 8, 3, 3, 9, 6, 8, 5, 8, 7, 9, 2, 3, 4, 5, 6, 2, 0, 5, 2, 3, 1, 1, 2, 1, 1, 7, 2, 9, 3, 5, 5, 6, 3, 8, 9, 2, 7, 7, 6, 0, 2, 4, 8, 2, 7, 2, 2, 9, 3, 5, 5, 9, 4, 4, 2, 3, 0, 8, 8, 3, 6, 8, 5, 0, 0, 3, 4, 9, 9, 8, 9, 9, 3, 4, 5, 5, 9, 1, 4, 1, 8, 1, 8, 8, 4, 0, 0, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Compare to the identity: Sum_{n>=0} t^n/(1 + t)^(n+1) = 1 for all real t > -1. Related series identity: Sum_{n>=0} x^(n^2)/(1 + x^n)^(n+1) = Sum_{n>=0} (x^n - 1)^n, which holds for |x| < 1 and at x = 1. Note that Sum_{n>=0} q^(n^2)/(1 + q^n)^n diverges when q equals this constant. Related constants: a relative maximum for F(x) = Sum_{n>0} x^(n^2) / (1 + x^n)^(n+1) occurs at x = r = 1.16770163525453860038060210814815171759269740752204 61096022701834019548200984085800877983418367920675... where F(r) = 1.62296829171282092185394583034435963782567708182473 69241563842957219935907486317481375662246384816002...; the constant r satisfies Sum_{n>=0} n * (n - r^n) * r^(n^2) / (1 + r^n)^(n+2) = 0. LINKS Table of n, a(n) for n=1..201. FORMULA Constant q satisfies: (1) Sum_{n>0} q^(n^2) / (1 + q^n)^(n+1) = 1. (2) Sum_{n>0} q^(-n) / (1 + q^(-n))^(n+1) = 1. EXAMPLE The initial 1050 digits of the constant are: q = 2.08512411763439372380336860597510492646644984917005\ 60399166820475685459472683380608633685728475391666\ 23202960523783396858792345620523112117293556389277\ 60248272293559442308836850034998993455914181884008\ 17413830379380420723394493519228868838277264250552\ 70338374888180842285509880667363656335623958582189\ 14957227277741457974426468080521597137811124272934\ 77644094270592199652753161086962841342379558889650\ 66813332146747026294593263775521540009547253097527\ 21223780458855792702371920654676025439770399813608\ 58163997909646639377553074980011935193988180130706\ 87431850604890853256977074795669925397675297237888\ 48538031116570208321040148368549607516080806946967\ 19390696127990123894175048822839082258147654679789\ 68673370868246837943169347184978182144767139980003\ 04843398161679491979027572749436392635882596355424\ 88655297144993770936404696899918268972299812682654\ 09750091784431323103697192747125489365588143112222\ 06559003610924134478070966807827169484545374171016\ 15811105252817860965040577295069618649899630322302\ 86215867892980222282818894596943887764450079690287.... RELATED VALUES. 1/q = 0.4795877576508566835272787486017081382964967858692... where Sum_{n>0} (1/q)^n / (1 + (1/q)^n)^(n+1) = 1. Series Sum_{n>=0} q^(n^2)/(1 + q^n)^n diverges, but: Sum_{n>=0} ( q^(n^2)/(1 + q^n)^n - 1 ) = -1.39414148047935302261469263168... CROSSREFS Sequence in context: A351483 A154909 A185348 * A020780 A334071 A243406 Adjacent sequences: A321596 A321597 A321598 * A321600 A321601 A321602 KEYWORD nonn,cons AUTHOR Paul D. Hanna, Nov 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 11:05 EDT 2023. Contains 365544 sequences. (Running on oeis4.)