Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Nov 23 2018 08:21:42
%S 2,0,8,5,1,2,4,1,1,7,6,3,4,3,9,3,7,2,3,8,0,3,3,6,8,6,0,5,9,7,5,1,0,4,
%T 9,2,6,4,6,6,4,4,9,8,4,9,1,7,0,0,5,6,0,3,9,9,1,6,6,8,2,0,4,7,5,6,8,5,
%U 4,5,9,4,7,2,6,8,3,3,8,0,6,0,8,6,3,3,6,8,5,7,2,8,4,7,5,3,9,1,6,6,6,2,3,2,0,2,9,6,0,5,2,3,7,8,3,3,9,6,8,5,8,7,9,2,3,4,5,6,2,0,5,2,3,1,1,2,1,1,7,2,9,3,5,5,6,3,8,9,2,7,7,6,0,2,4,8,2,7,2,2,9,3,5,5,9,4,4,2,3,0,8,8,3,6,8,5,0,0,3,4,9,9,8,9,9,3,4,5,5,9,1,4,1,8,1,8,8,4,0,0,8
%N Decimal expansion of a constant q such that Sum_{n>0} q^(n^2) / (1 + q^n)^(n+1) = 1.
%C Compare to the identity: Sum_{n>=0} t^n/(1 + t)^(n+1) = 1 for all real t > -1.
%C Related series identity: Sum_{n>=0} x^(n^2)/(1 + x^n)^(n+1) = Sum_{n>=0} (x^n - 1)^n, which holds for |x| < 1 and at x = 1.
%C Note that Sum_{n>=0} q^(n^2)/(1 + q^n)^n diverges when q equals this constant.
%C Related constants: a relative maximum for F(x) = Sum_{n>0} x^(n^2) / (1 + x^n)^(n+1) occurs at x = r = 1.16770163525453860038060210814815171759269740752204 61096022701834019548200984085800877983418367920675... where F(r) = 1.62296829171282092185394583034435963782567708182473 69241563842957219935907486317481375662246384816002...; the constant r satisfies Sum_{n>=0} n * (n - r^n) * r^(n^2) / (1 + r^n)^(n+2) = 0.
%F Constant q satisfies:
%F (1) Sum_{n>0} q^(n^2) / (1 + q^n)^(n+1) = 1.
%F (2) Sum_{n>0} q^(-n) / (1 + q^(-n))^(n+1) = 1.
%e The initial 1050 digits of the constant are:
%e q = 2.08512411763439372380336860597510492646644984917005\
%e 60399166820475685459472683380608633685728475391666\
%e 23202960523783396858792345620523112117293556389277\
%e 60248272293559442308836850034998993455914181884008\
%e 17413830379380420723394493519228868838277264250552\
%e 70338374888180842285509880667363656335623958582189\
%e 14957227277741457974426468080521597137811124272934\
%e 77644094270592199652753161086962841342379558889650\
%e 66813332146747026294593263775521540009547253097527\
%e 21223780458855792702371920654676025439770399813608\
%e 58163997909646639377553074980011935193988180130706\
%e 87431850604890853256977074795669925397675297237888\
%e 48538031116570208321040148368549607516080806946967\
%e 19390696127990123894175048822839082258147654679789\
%e 68673370868246837943169347184978182144767139980003\
%e 04843398161679491979027572749436392635882596355424\
%e 88655297144993770936404696899918268972299812682654\
%e 09750091784431323103697192747125489365588143112222\
%e 06559003610924134478070966807827169484545374171016\
%e 15811105252817860965040577295069618649899630322302\
%e 86215867892980222282818894596943887764450079690287....
%e RELATED VALUES.
%e 1/q = 0.4795877576508566835272787486017081382964967858692...
%e where Sum_{n>0} (1/q)^n / (1 + (1/q)^n)^(n+1) = 1.
%e Series Sum_{n>=0} q^(n^2)/(1 + q^n)^n diverges,
%e but: Sum_{n>=0} ( q^(n^2)/(1 + q^n)^n - 1 ) = -1.39414148047935302261469263168...
%K nonn,cons
%O 1,1
%A _Paul D. Hanna_, Nov 21 2018