login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321598 a(n) = Sum_{d|n} d*binomial(d+2,3). 0
1, 9, 31, 89, 176, 375, 589, 1049, 1516, 2384, 3147, 4823, 5916, 8437, 10406, 14105, 16474, 22380, 25271, 33264, 37810, 47683, 52901, 68183, 73301, 91100, 100174, 122197, 130356, 161750, 169137, 205593, 219162, 259242, 272714, 330524, 338144, 400719, 421686, 493424 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Inverse Möbius transform of A002417.

LINKS

Table of n, a(n) for n=1..40.

N. J. A. Sloane, Transforms

FORMULA

G.f.: Sum_{k>=1} x^k*(1 + 3*x^k)/(1 - x^k)^5.

G.f.: Sum_{k>=1} k*A000292(k)*x^k/(1 - x^k).

L.g.f.: -log(Product_{k>=1} (1 - x^k)^A000292(k)) = Sum_{n>=1} a(n)*x^n/n.

Dirichlet g.f.: (zeta(s-4) + 3*zeta(s-3) + 2*zeta(s-2))*zeta(s)/6.

a(n) = (2*sigma_2(n) + 3*sigma_3(n) + sigma_4(n))/6.

a(n) = Sum_{d|n} A002417(d).

Sum_{k=1..n} a(k) ~ Zeta(5) * n^5 / 30. - Vaclav Kotesovec, Feb 02 2019

MATHEMATICA

Table[Sum[d Binomial[d + 2, 3], {d, Divisors[n]}], {n, 40}]

nmax = 40; Rest[CoefficientList[Series[Sum[x^k (1 + 3 x^k)/(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x]]

Table[(2 DivisorSigma[2, n] + 3 DivisorSigma[3, n] + DivisorSigma[4, n])/6, {n, 40}]

CROSSREFS

Cf. A000292, A000335, A001157, A001158, A001159, A002417, A059358, A278403.

Sequence in context: A177342 A224000 A118444 * A048374 A226274 A184054

Adjacent sequences:  A321595 A321596 A321597 * A321599 A321600 A321601

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Nov 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 02:54 EDT 2019. Contains 328244 sequences. (Running on oeis4.)