OFFSET
0,4
COMMENTS
Given the series S = (1, -i)^n, n>0: (1, -1), (0, -2), (-2, -2), ...; the real part of the binomial transform of S = (1, 1, -1, -9, -31, -79, -161, -249, -191, 481, ...). - Gary W. Adamson, Sep 19 2008
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,-6,0,-25).
FORMULA
G.f.: (1 - x + 13*x^2 - 21*x^3 + 67*x^4 - 115*x^5 + 175*x^6 - 375*x^7) / (1 + 6*x^2 + 25*x^4)^2.
For n > 3, a(n) = 4*a(n-1) - 5*a(n-2). - Gary W. Adamson, Aug 08 2006
E.g.f.: exp(x)*cos(2*x) - sin(2*x)*(cosh(x) - sinh(x)). - Stefano Spezia, Jul 01 2023
a(n) = (-1)^floor((n+1)/2)*(1+i)*((2+i)^n-i*(2-i)^n)/2, where i is the imaginary unit. - Gerry Martens, Mar 31 2024
MATHEMATICA
LinearRecurrence[{0, -6, 0, -25}, {1, -1, 1, -9}, 33] (* Jean-François Alcover, Apr 08 2024 *)
PROG
(PARI) {a(n)=polcoeff((1-x+13*x^2-21*x^3+67*x^4-115*x^5+175*x^6-375*x^7) /(1+6*x^2+25*x^4 +x*O(x^n))^2, n)}
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul D. Hanna, Apr 28 2006
STATUS
approved