OFFSET
0,2
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..200
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^(2*n) - A(x))^n.
(2) 1 = Sum_{n>=0} (1+x)^(2*n^2) / (1 + (1+x)^(2*n)*A(x))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 68*x^3 + 1521*x^4 + 45328*x^5 + 1660032*x^6 + 71548008*x^7 + 3533826841*x^8 + 196432984748*x^9 + 12128132342482*x^10 + ...
such that
1 = 1 + ((1+x)^2 - A(x)) + ((1+x)^4 - A(x))^2 + ((1+x)^6 - A(x))^3 + ((1+x)^8 - A(x))^4 + ((1+x)^10 - A(x))^5 + ((1+x)^12 - A(x))^6 + ((1+x)^14 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)^2/(1 + (1+x)^2*A(x))^2 + (1+x)^8/(1 + (1+x)^4*A(x))^3 + (1+x)^18/(1 + (1+x)^6*A(x))^4 + (1+x)^32/(1 + (1+x)^8*A(x))^5 + (1+x)^50/(1 + (1+x)^10*A(x))^6 + ...
RELATED SERIES.
The logarithmic derivative of the g.f. begins
A'(x)/A(x) = 2 + 6*x + 182*x^2 + 5554*x^3 + 211172*x^4 + 9397920*x^5 + 476737830*x^6 + 27086036234*x^7 + 1702330030676*x^8 + ...
the coefficients of which are all even:
(1/2) * A'(x)/A(x) = 1 + 3*x + 91*x^2 + 2777*x^3 + 105586*x^4 + 4698960*x^5 + 238368915*x^6 + 13543018117*x^7 + 851165015338*x^8 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(2*m) - Ser(A))^m ) )[#A] ); H=A; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 14 2018
STATUS
approved