login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321602
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^(2*n) - A(x))^n.
6
1, 2, 5, 68, 1521, 45328, 1660032, 71548008, 3533826841, 196432984748, 12128132342482, 823366216285428, 60966207548525287, 4890600994792550264, 422601696583826709492, 39142599000082019249968, 3869325702147169825040193, 406650337650126697706078146, 45281361448272561712508294157, 5325916931170845646048163850556, 659842223101960470758187538118437
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^(2*n) - A(x))^n.
(2) 1 = Sum_{n>=0} (1+x)^(2*n^2) / (1 + (1+x)^(2*n)*A(x))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 68*x^3 + 1521*x^4 + 45328*x^5 + 1660032*x^6 + 71548008*x^7 + 3533826841*x^8 + 196432984748*x^9 + 12128132342482*x^10 + ...
such that
1 = 1 + ((1+x)^2 - A(x)) + ((1+x)^4 - A(x))^2 + ((1+x)^6 - A(x))^3 + ((1+x)^8 - A(x))^4 + ((1+x)^10 - A(x))^5 + ((1+x)^12 - A(x))^6 + ((1+x)^14 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)^2/(1 + (1+x)^2*A(x))^2 + (1+x)^8/(1 + (1+x)^4*A(x))^3 + (1+x)^18/(1 + (1+x)^6*A(x))^4 + (1+x)^32/(1 + (1+x)^8*A(x))^5 + (1+x)^50/(1 + (1+x)^10*A(x))^6 + ...
RELATED SERIES.
The logarithmic derivative of the g.f. begins
A'(x)/A(x) = 2 + 6*x + 182*x^2 + 5554*x^3 + 211172*x^4 + 9397920*x^5 + 476737830*x^6 + 27086036234*x^7 + 1702330030676*x^8 + ...
the coefficients of which are all even:
(1/2) * A'(x)/A(x) = 1 + 3*x + 91*x^2 + 2777*x^3 + 105586*x^4 + 4698960*x^5 + 238368915*x^6 + 13543018117*x^7 + 851165015338*x^8 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(2*m) - Ser(A))^m ) )[#A] ); H=A; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 14 2018
STATUS
approved