login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321468
Number of factorizations of n! into factors > 1 that can be obtained by taking the multiset union of a choice of factorizations of each positive integer from 2 to n into factors > 1.
6
1, 1, 1, 1, 2, 2, 4, 4, 10, 20, 40, 40, 116, 116, 232, 464, 1440, 1440, 4192, 4192, 11640, 23280, 46560, 46560, 157376
OFFSET
0,5
COMMENTS
a(n) is the number of factorizations finer than (2*3*...*n) in the poset of factorizations of n! into factors > 1, ordered by refinement.
EXAMPLE
The a(2) = 1 through a(8) = 10 factorizations:
2 2*3 2*3*4 2*3*4*5 2*3*4*5*6 2*3*4*5*6*7 2*3*4*5*6*7*8
2*2*2*3 2*2*2*3*5 2*2*2*3*5*6 2*2*2*3*5*6*7 2*2*2*3*5*6*7*8
2*2*3*3*4*5 2*2*3*3*4*5*7 2*2*3*3*4*5*7*8
2*2*2*2*3*3*5 2*2*2*2*3*3*5*7 2*2*3*4*4*5*6*7
2*2*2*2*3*3*5*7*8
2*2*2*2*3*4*5*6*7
2*2*2*3*3*4*4*5*7
2*2*2*2*2*2*3*5*6*7
2*2*2*2*2*3*3*4*5*7
2*2*2*2*2*2*2*3*3*5*7
For example, 2*2*2*2*2*2*3*5*6*7 = (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2), so (2*2*2*2*2*2*3*5*6*7) is counted under a(8).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Union[Sort/@Join@@@Tuples[facs/@Range[2, n]]]], {n, 10}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 11 2018
STATUS
approved