Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 13 2018 12:55:05
%S 1,1,1,1,2,2,4,4,10,20,40,40,116,116,232,464,1440,1440,4192,4192,
%T 11640,23280,46560,46560,157376
%N Number of factorizations of n! into factors > 1 that can be obtained by taking the multiset union of a choice of factorizations of each positive integer from 2 to n into factors > 1.
%C a(n) is the number of factorizations finer than (2*3*...*n) in the poset of factorizations of n! into factors > 1, ordered by refinement.
%e The a(2) = 1 through a(8) = 10 factorizations:
%e 2 2*3 2*3*4 2*3*4*5 2*3*4*5*6 2*3*4*5*6*7 2*3*4*5*6*7*8
%e 2*2*2*3 2*2*2*3*5 2*2*2*3*5*6 2*2*2*3*5*6*7 2*2*2*3*5*6*7*8
%e 2*2*3*3*4*5 2*2*3*3*4*5*7 2*2*3*3*4*5*7*8
%e 2*2*2*2*3*3*5 2*2*2*2*3*3*5*7 2*2*3*4*4*5*6*7
%e 2*2*2*2*3*3*5*7*8
%e 2*2*2*2*3*4*5*6*7
%e 2*2*2*3*3*4*4*5*7
%e 2*2*2*2*2*2*3*5*6*7
%e 2*2*2*2*2*3*3*4*5*7
%e 2*2*2*2*2*2*2*3*3*5*7
%e For example, 2*2*2*2*2*2*3*5*6*7 = (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2), so (2*2*2*2*2*2*3*5*6*7) is counted under a(8).
%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t Table[Length[Union[Sort/@Join@@@Tuples[facs/@Range[2,n]]]],{n,10}]
%Y Dominated by A321514.
%Y Cf. A001055, A066723, A076716, A157612, A242422, A265947, A300383, A317144, A317145, A317534, A321467, A321470, A321471, A321472.
%K nonn,more
%O 0,5
%A _Gus Wiseman_, Nov 11 2018