login
A320526
a(n) is the number of chiral pairs of color patterns (set partitions) in a row of length n using exactly 3 colors (subsets).
6
0, 0, 0, 2, 10, 40, 141, 464, 1480, 4600, 14145, 43052, 130480, 393820, 1186521, 3568784, 10725760, 32213200, 96714465, 290284052, 871142800, 2613981700, 7843080201, 23531425304, 70598731840, 211804847800, 635432109585, 1906330676252, 5719061512720, 17157321139180
OFFSET
1,4
COMMENTS
Two color patterns are equivalent if we permute the colors. Chiral color patterns must not be equivalent if we reverse the order of the pattern.
FORMULA
a(n) = (S2(n,k) - A(n,k))/2, where k=3 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
G.f.: (x^3 / Product_{k=1..3} (1 - k*x) - x^3*(1 + 2 x)/((1 - 2 x^2)*(1 - 3 x^2))) / 2.
a(n) = (A000392(n) - A304973(n)) / 2 = A000392(n) - A056327(n) = A056327(n) - A304973(n).
EXAMPLE
For a(4)=2, the two chiral pairs are AABC-ABCC and ABAC-ABCB.
MATHEMATICA
k=3; Table[(StirlingS2[n, k] - If[EvenQ[n], 2StirlingS2[n/2+1, 3] - 2StirlingS2[n/2, 3], StirlingS2[(n+3)/2, 3] - StirlingS2[(n+1)/2, 3]])/2, {n, 1, 30}]
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] (* A304972 *)
k = 3; Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 30}]
LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 0, 2, 10, 40,
141}, 40]
PROG
(PARI) m=40; v=concat([0, 0, 0, 2, 10, 40, 141], vector(m-7)); for(n=8, m, v[n] = 6*v[n-1] -6*v[n-2] -24*v[n-3] +49*v[n-4] +6*v[n-5] -66*v[n-6] +36*v[n-7] ); v \\ G. C. Greubel, Oct 16 2018
(Magma) I:=[0, 0, 0, 2, 10, 40, 141]; [n le 7 select I[n] else 6*Self(n-1) -6*Self(n-2) -24*Self(n-3) +49*Self(n-4) +6*Self(n-5) -66*Self(n-6) +36*Self(n-7): n in [1..40]]; // G. C. Greubel, Oct 16 2018
CROSSREFS
Column 3 of A320525.
Cf. A000392 (oriented), A056327 (unoriented), A304973 (achiral).
Sequence in context: A261473 A377946 A174395 * A193519 A374298 A268329
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Oct 14 2018
STATUS
approved