login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320525
Triangle read by rows: T(n,k) = number of chiral pairs of color patterns (set partitions) in a row of length n using exactly k colors (subsets).
8
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 6, 10, 4, 0, 0, 12, 40, 28, 6, 0, 0, 28, 141, 167, 64, 9, 0, 0, 56, 464, 824, 508, 124, 12, 0, 0, 120, 1480, 3840, 3428, 1300, 220, 16, 0, 0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0, 0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0, 0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0
OFFSET
1,8
COMMENTS
Two color patterns are equivalent if we permute the colors. Chiral color patterns must not be equivalent if we reverse the order of the pattern.
If the top entry of the triangle is changed from 0 to 1, this is the number of non-equivalent distinguishing partitions of the path on n vertices (n >= 1) with exactly k parts (1 <= k <= n). - Bahman Ahmadi, Aug 21 2019
LINKS
B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
FORMULA
T(n,k) = (S2(n,k) - A(n,k))/2, where S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
T(n,k) = (A008277(n,k) - A304972(n,k)) / 2 = A008277(n,k) - A284949(n,k) = A284949(n,k) - A304972(n,k).
EXAMPLE
Triangle begins with T(1,1):
0;
0, 0;
0, 1, 0;
0, 2, 2, 0;
0, 6, 10, 4, 0;
0, 12, 40, 28, 6, 0;
0, 28, 141, 167, 64, 9, 0;
0, 56, 464, 824, 508, 124, 12, 0;
0, 120, 1480, 3840, 3428, 1300, 220, 16, 0;
0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0;
0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0;
0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0;
...
For T(3,2)=1, the chiral pair is AAB-ABB. For T(4,2)=2, the chiral pairs are AAAB-ABBB and AABA-ABAA. For T(5,2)=6, the chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB.
MATHEMATICA
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] (* A304972 *)
Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 12}, {k, 1, n}] // Flatten
PROG
(PARI) \\ here Ach is A304972 as square matrix.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
T(n)={(matrix(n, n, i, k, stirling(i, k, 2)) - Ach(n))/2}
{ my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 18 2019
CROSSREFS
Columns 1-6 are A000004, A122746(n-2), A320526, A320527, A320528, A320529.
Row sums are A320937.
Cf. A008277 (oriented), A284949 (unoriented), A304972 (achiral).
Sequence in context: A296148 A121178 A175917 * A357647 A069971 A167291
KEYWORD
nonn,tabl,easy
AUTHOR
Robert A. Russell, Oct 14 2018
STATUS
approved