login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320523
Smallest m > 1 such that either n^m == n (mod 25) or n^m == 0 (mod 25).
0
2, 21, 21, 11, 2, 6, 5, 21, 11, 2, 6, 21, 21, 11, 2, 6, 21, 5, 11, 2, 6, 21, 21, 3, 2, 2, 21, 21, 11, 2, 6, 5, 21, 11, 2, 6, 21, 21, 11, 2, 6, 21, 5, 11, 2, 6, 21, 21, 3, 2, 2, 21, 21, 11, 2, 6, 5, 21, 11, 2, 6, 21, 21, 11, 2, 6, 21, 5, 11, 2, 6, 21, 21, 3, 2
OFFSET
1,1
COMMENTS
This is a periodic sequence. In fact, a(n) (mod 25) == a(n + k*25) (mod 25), for any k >= 0. The maximum value of a(n) is 21 = lambda(25) + 1 = 20 + 1, since 20 is the Carmichael's lambda value in 25.
This sequence, omitting a(n = 10*k), predicts the convergence speed of any tetration a^^b, for any b >= a > 2, since A317905(n) = 1 iff a(n) > 5 and A317905(n) >= 2 otherwise (for any 2 <= a(n) <= 5).
REFERENCES
M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.
LINKS
J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8.
M. Ripà, On the Convergence Speed of Tetration, ResearchGate (2018).
M. Ripà, On the Convergence Speed of Tetration, viXra (2018).
Wikipedia, Tetration
FORMULA
For any k >= 0,
a( 1 + k*25) = 2;
a( 2 + k*25) = 21;
a( 3 + k*25) = 21;
a( 4 + k*25) = 11;
a( 5 + k*25) = 2;
a( 6 + k*25) = 6;
a( 7 + k*25) = 5;
a( 8 + k*25) = 21;
a( 9 + k*25) = 11;
a(10 + k*25) = 2;
a(11 + k*25) = 6;
a(12 + k*25) = 21;
a(13 + k*25) = 21;
a(14 + k*25) = 11;
a(15 + k*25) = 2;
a(16 + k*25) = 6;
a(17 + k*25) = 21;
a(18 + k*25) = 5;
a(19 + k*25) = 11;
a(20 + k*25) = 2;
a(21 + k*25) = 6;
a(22 + k*25) = 21;
a(23 + k*25) = 21;
a(24 + k*25) = 3;
a(25*(k + 1))= 2.
EXAMPLE
For n = 41, a(41) = a(16) = 6, since 16^6 mod 25 = 16.
MATHEMATICA
With[{k = 25}, Table[If[Mod[n, 5] == 0, 2, SelectFirst[Range[2, CarmichaelLambda@ k + 1], PowerMod[n, #, k] == Mod[n, k] &]], {n, 75}]] (* Michael De Vlieger, Oct 15 2018 *)
PROG
(PARI) a(n) = {my(m=2); while ((Mod(n, 25)^m != n) && (Mod(n, 25)^m != 0), m++); m; } \\ Michel Marcus, Oct 16 2018
CROSSREFS
Sequence in context: A084313 A140268 A106422 * A371060 A171549 A355404
KEYWORD
nonn,easy
AUTHOR
Marco Ripà, Oct 14 2018
STATUS
approved