login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320393
First members of the Cunningham chains of the first kind whose length is a prime.
0
2, 3, 11, 23, 29, 41, 53, 83, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 419, 431, 443, 491, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1289, 1439, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003, 2039, 2063, 2069, 2129, 2141
OFFSET
1,1
EXAMPLE
41 is an item as it generates the Cunningham chain (41, 83, 167), of length 3, that is prime.
MATHEMATICA
aQ[n_] := PrimeQ[Length[NestWhileList[2#+1&, n, PrimeQ]] - 1]; Select[Range[2200], aQ] (* Amiram Eldar, Dec 11 2018 *)
PROG
(Python)
from sympy.ntheory import isprime
def cunningham_chain(p, t):
#it returns the cunningham chain generated by p of type t (1 or 2)
if not(isprime(p)):
raise Exception("Invalid starting number! It must be prime")
if t!=1 and t!=2:
raise Exception("Invalid type! It must be 1 or 2")
elif t==1: k=t
else: k=-1
cunn_ch=[]
cunn_ch.append(p)
while isprime(2*p+k):
p=2*p+k
cunn_ch.append(p)
return(cunn_ch)
from sympy import prime
n=350
r=""
for i in range(1, n):
cunn_ch=(cunningham_chain(prime(i), 1))
lcunn_ch=len(cunn_ch)
if isprime(lcunn_ch):
r += ", "+str(prime(i))
print(r[1:])
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierandrea Formusa, Dec 10 2018
STATUS
approved