OFFSET
1,1
EXAMPLE
E.g. a(3) is the smallest prime > a(2)=3 which, when concatenated to 23 (which is the concatenation of a(1) and a(2)) gives a prime. Thus a(3)=11 because 235 and 237 are composite.
MAPLE
with(numtheory): pout := [2, 3]: nout := [1, 2]: for n from 3 to 1000 do: p := ithprime(n): d := parse(cat(pout[nops(pout)-1], pout[nops(pout)], p)): if (isprime(d)) then pout := [op(pout), p]: nout := [op(nout), n]: fi: od: pout;
MATHEMATICA
a[1] = 2; a[2] = 3; a[n_] := a[n] = SelectFirst[Prime@ Range[#, 10^3 + #] &[PrimePi@ a[n - 1] + 1], PrimeQ@ FromDigits@ Join[IntegerDigits@ a[n - 2], IntegerDigits@ a[n - 1], IntegerDigits@ #] &]; Array[a, 51] (* Version 10, or *)
a[1] = 2; a[2] = 3; a[n_] := a[n] = Block[{p = PrimePi@ a[n - 1] + 1},
While[! PrimeQ@ FromDigits@ Join[IntegerDigits@ a[n - 2], IntegerDigits@ a[n - 1], IntegerDigits@ p], p = NextPrime@ p]; p]; Array[a, 51] (* Michael De Vlieger, Aug 15 2016 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
EXTENSIONS
Edited by Charles R Greathouse IV, Apr 26 2010
Edited by Zak Seidov, Aug 15 2016
STATUS
approved