Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jan 23 2019 10:54:01
%S 2,3,11,23,29,41,53,83,113,131,173,179,191,233,239,251,281,293,419,
%T 431,443,491,593,641,653,659,683,719,743,761,809,911,953,1013,1019,
%U 1031,1049,1103,1223,1289,1439,1451,1481,1499,1511,1559,1583,1601,1733,1811,1889,1901,1931,1973,2003,2039,2063,2069,2129,2141
%N First members of the Cunningham chains of the first kind whose length is a prime.
%e 41 is an item as it generates the Cunningham chain (41, 83, 167), of length 3, that is prime.
%t aQ[n_] := PrimeQ[Length[NestWhileList[2#+1&, n, PrimeQ]] - 1]; Select[Range[2200], aQ] (* _Amiram Eldar_, Dec 11 2018 *)
%o (Python)
%o from sympy.ntheory import isprime
%o def cunningham_chain(p,t):
%o #it returns the cunningham chain generated by p of type t (1 or 2)
%o if not(isprime(p)):
%o raise Exception("Invalid starting number! It must be prime")
%o if t!=1 and t!=2:
%o raise Exception("Invalid type! It must be 1 or 2")
%o elif t==1: k=t
%o else: k=-1
%o cunn_ch=[]
%o cunn_ch.append(p)
%o while isprime(2*p+k):
%o p=2*p+k
%o cunn_ch.append(p)
%o return(cunn_ch)
%o from sympy import prime
%o n=350
%o r=""
%o for i in range(1,n):
%o cunn_ch=(cunningham_chain(prime(i),1))
%o lcunn_ch=len(cunn_ch)
%o if isprime(lcunn_ch):
%o r += ","+str(prime(i))
%o print(r[1:])
%Y Cf. A059761, A059762, A059764.
%K nonn
%O 1,1
%A _Pierandrea Formusa_, Dec 10 2018