login
A320395
Number of non-isomorphic 3-uniform multiset systems over {1,...,n}.
8
1, 2, 10, 208, 45960, 287800704, 100103176111616, 3837878984050795692032, 32966965900633495618246298767360, 128880214965936601447070466061615999984402432, 464339910355487357558396669850788946402420533504952464572416
OFFSET
0,2
LINKS
EXAMPLE
Non-isomorphic representatives of the a(2) = 10 multiset systems:
{}
{{111}}
{{122}}
{{111}{222}}
{{112}{122}}
{{112}{222}}
{{122}{222}}
{{111}{122}{222}}
{{112}{122}{222}}
{{111}{112}{122}{222}}
MATHEMATICA
Table[Sum[2^PermutationCycles[Ordering[Map[Sort, Select[Tuples[Range[n], 3], OrderedQ]/.Rule@@@Table[{i, prm[[i]]}, {i, n}], {1}]], Length], {prm, Permutations[Range[n]]}]/n!, {n, 6}]
PROG
(PARI)
permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L<k, listput(L, #L))); Vec(L)}
can(v, f)={my(d=1, u=v); while(d>0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
Q(perm)={my(t=0); forsubset([#perm+2, 3], v, t += can([v[1], v[2]-1, v[3]-2], t->perm[t])); t}
a(n)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(rep(p))); s/n!} \\ Andrew Howroyd, Aug 26 2019
CROSSREFS
The 2-uniform case is A000666. The case of sets (as opposed to multisets) is A000665. The case of labeled spanning sets is A302374, with unlabeled case A322451.
Sequence in context: A246532 A159558 A297066 * A001528 A293148 A193482
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 12 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Aug 26 2019
STATUS
approved